The Impacts of California's San Francisco Bay Area Gap on Precipitation Observed in the Sierra Nevada during HMT and CalWater
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Impacts of California's San Francisco Bay Area Gap on Precipitation Observed in the Sierra Nevada during HMT and CalWater

Filetype[PDF-10.62 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Atmospheric rivers (ARs) are narrow regions of enhanced water vapor transport, usually found on the warm-sector side of the polar cold front in many midlatitude storms formed primarily over the oceans. Nonbrightband (NBB) rain is a shallow orographic rainfall process driven by collision and coalescence that has been observed in some of these storms. NBB rain accounts for about one-third, on average, of the total winter season rainfall occurring at a coastal mountain site in Northern California. During the California Energy Commission's CalWater project, nearly the same fraction of NBB rain was observed at a northern Sierra Nevada foothills site as compared to the coastal mountains, whereas less than half of the fractional amount of NBB rain was observed at a southern Sierra Nevada foothills site. Both Sierra Nevada sites often experience terrain-induced blocked flow, that is, Sierra barrier jet (SBJ) during landfalling winter storms. However, the northern Sierra Nevada site often is oriented geographically downwind of a gap in the coastal terrain near San Francisco during AR landfall. This gap allows maritime air in the AR to arrive at the northern site and enhance the collision-coalescence process in orographic feeder clouds as compared with the southern site. As a result, a greater amount and intensity of NBB rain and overall precipitation was produced at the northern site. This study uses a variety of observations collected in the coastal and Sierra Nevada ranges from the Hydrometeorology Testbed and CalWater field campaigns to document this behavior. A detailed case study provides additional context on the interaction between AR flow, the SBJ, and precipitation processes.
  • Source:
    Journal of Hydrometeorology, 16(3), 1048-1069.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

Related Documents

You May Also Like