Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra

Filetype[PDF-1.53 MB]


  • Journal Title:
    Atmospheric Measurement Techniques
  • Description:
    This study presents and applies three separate processing methods to improve high-order moments estimated from 35 GHz (Ka band) vertically pointing radar Doppler velocity spectra. The first processing method removes Doppler-shifted ground clutter from spectra collected by a US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program Ka-band zenith pointing radar (KAZR) deployed at Oliktok Point (OLI), Alaska. Ground clutter resulted from multiple pathways through antenna side lobes and reflections off a rotating scanning radar antenna located 2m away from KAZR, which caused Doppler shifts in ground clutter returns from stationary targets 2.5 km away. After removing clutter in the recorded velocity spectra, the second processing method identifies multiple separate and sub-peaks in the spectra and estimates high-order moments for each peak. Multiple peaks and high-order moments were estimated for both original 2 and 15 s averaged spectra. The third processing step improves the spectrum variance, skewness, and kurtosis estimates by removing velocity variability due to turbulent broadening during 15 s averaging intervals. Applying the multiple peak processing to Doppler velocity spectra during liquid-only clouds can identify cloud and drizzle particles and during mixed-phase clouds can identify liquid cloud and frozen hydrometeors. Consistent with previous studies, this work found that spectrum skewness assuming only a single spectral peak was a good indicator of two hydrometeor populations (for example, cloud and drizzle particles) being present in the radar pulse volume. Yet, after dividing the spectrum into multiple peaks, velocity spectrum skewness for individual peaks is near zero, indicating nearly symmetric peaks. This suggests that future studies should use velocity skewness of single-peak spectra as an indicator of possible multiple hydrometeor populations and then use multiple-peak moments for quantitative studies. Three future activities will continue this work. First, KAZR spectra from several ARM sites have been processed and are available in the ARM archive as a principal investigator (PI) product. ARM programmers are evaluating these processing methods as part of future multiple-peak products generated by ARM. Third, MATLAB code generating the Oliktok Point products has been uploaded as supplemental material for public dissemination.
  • Source:
    Atmospheric Measurement Techniques, 11(9), 4963-4980.
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26