Peroxynitric acid (HO2NO2) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry
-
2015
-
Details
-
Journal Title:Atmospheric Chemistry and Physics
-
Personal Author:
-
NOAA Program & Office:
-
Description:In this paper laboratory work is documented establishing iodide ion chemical ionization mass spectrometry (I- CIMS) as a sensitive method for the unambiguous detection of peroxynitric acid (HO2NO2; PNA). A dynamic calibration source for HO2NO2, HO2, and HONO was developed and calibrated using a novel total NOy cavity ring-down spectroscopy (CaRDS) detector. Photochemical sources of these species were used for the calibration and validation of the I- CIMS instrument for detection of HO2NO2. Ambient observations of HO2NO2 using I- CIMS during the 2013 and 2014 Uintah Basin Wintertime Ozone Study (UBWOS) are presented. Strong inversions leading to a build-up of many primary and secondary pollutants as well as low temperatures drove daytime HO2NO2 as high as 1.5 ppbv during the 2013 study. A comparison of HO2NO2 observations to mixing ratios predicted using a chemical box model describing an ozone formation event observed during the 2013 wintertime shows agreement in the daily maxima HO2NO2 mixing ratio, but a differences of several hours in the timing of the observed maxima. Observations of vertical gradients suggest that the ground snow surface potentially serves as both a net sink and source of HO2NO2 depending on the time of day. Sensitivity tests using a chemical box model indicate that the lifetime of HO2NO2 with respect to deposition has a non-negligible impact on ozone production rates on the order of 10 %.
-
Source:Atmospheric Chemistry and Physics, 15(14), 8101-8114.
-
DOI:
-
Document Type:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:urn:sha-512:1109a6c3b4f5c6975c9c11a847c914ad74a18691e50887a56e3ebd8ac8522a1943f4cc0435c7cd60cb46bc0c69f9bcc5849c4362484414a8dd478a9fb23c189d
-
Download URL:
-
File Type:
Related Documents
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like