U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Subseasonal Forecasting with an Icosahedral, Vertically Quasi-Lagrangian Coupled Model. Part I: Model Overview and Evaluation of Systematic Errors



Details

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The atmospheric hydrostatic Flow-Following Icosahedral Model (FIM), developed for medium-range weather prediction, provides a unique three-dimensional grid structure-a quasi-uniform icosahedral horizontal grid and an adaptive quasi-Lagrangian vertical coordinate. To extend the FIM framework to subseasonal time scales, an icosahedral-grid rendition of the Hybrid Coordinate Ocean Model (iHYCOM) was developed and coupled to FIM. By sharing a common horizontal mesh, air-sea fluxes between the two models are conserved locally and globally. Both models use similar adaptive hybrid vertical coordinates. Another unique aspect of the coupled model (referred to as FIM-iHYCOM) is the use of the Grell-Freitas scale-aware convective scheme in the atmosphere. A multiyear retrospective study is necessary to demonstrate the potential usefulness and allow for immediate bias correction of a subseasonal prediction model. In these two articles, results are shown based on a 16-yr period of hindcasts from FIM-iHYCOM, which has been providing real-time forecasts out to a lead time of 4 weeks for NOAA's Subseasonal Experiment (SubX) starting July 2017. Part I provides an overview of FIM-iHYCOM and compares its systematic errors at subseasonal time scales to those of NOAA's operational Climate Forecast System version 2 (CFSv2). Part II uses bias-corrected hindcasts to assess both deterministic and probabilistic subseasonal skill of FIM-iHYCOM. FIM-iHYCOM has smaller biases than CFSv2 for some fields (including precipitation) and comparable biases for other fields (including sea surface temperature). FIM-iHYCOM also has less drift in bias between weeks 1 and 4 than CFSv2. The unique grid structure and physics suite of FIM-iHYCOM is expected to add diversity to multimodel ensemble forecasts at subseasonal time scales in SubX.
  • Source:
    Monthly Weather Review, 146(5), 1601-1617.
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:a4608288ab72c6ad73af26bd390972ee8b7301e888e4a9e07371fe2278c45d72bb5f98b30f41a88aaa8a4ab0cc1eb8d8453b5b6166f839acab3b199cc718a492
  • Download URL:
  • File Type:
    Filetype[PDF - 6.90 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.