A Random Forest Model Based on Lidar and Field Measurements for Parameterizing Surface Roughness in Coastal Modeling
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Random Forest Model Based on Lidar and Field Measurements for Parameterizing Surface Roughness in Coastal Modeling

Filetype[PDF-1.18 MB]



Details:

  • Journal Title:
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  • Description:
    A novel technique for parameterizing surface roughness in coastal inundation models using airborne laser scanning (lidar) data is presented. Two important parameters to coastal overland flow dynamics, Manning's n (bottom friction) and effective aerodynamic roughness length (wind speed reduction), are computed based on a random forest (RM) regression model trained using field measurements from 24 sites in Florida fused with georegistered lidar point cloud data. The lidar point cloud for each test site is separated into ground and nonground classes and the z-dimensional (height or elevation) variance from the least squares regression plane is computed, along with the height of the nonground regression plane. These statistics serve as the predictor variables in the parameterization model. The model is then tested using a bootstrap subsampling procedure consisting of removal without replacement of one record and using the surviving records to train the model and predict the surface roughness parameter of the removed record. When compared with the industry standard technique of assigning surface roughness parameters based on published land use/land cover type, the RM regression models reduce the parameterization error by 93% (0.086-0.006) and 53% (1.299-0.610 m) for Manning's n and effective aerodynamic roughness length, respectively. These improvements will improve water level and velocity predictions in coastal models.
  • Source:
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), 1582-1590.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26