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A Random Forest Model Based on Lidar and Field
Measurements for Parameterizing Surface

Roughness in Coastal Modeling
Stephen C. Medeiros, Scott C. Hagen, and John F. Weishampel

Abstract—A novel technique for parameterizing surface rough-
ness in coastal inundation models using airborne laser scanning
(lidar) data is presented. Two important parameters to coastal
overland flow dynamics, Manning’s n (bottom friction) and effec-
tive aerodynamic roughness length (wind speed reduction), are
computed based on a random forest (RM) regression model
trained using field measurements from 24 sites in Florida fused
with georegistered lidar point cloud data. The lidar point cloud
for each test site is separated into ground and nonground classes
and the z-dimensional (height or elevation) variance from the least
squares regression plane is computed, along with the height of the
nonground regression plane. These statistics serve as the predictor
variables in the parameterization model. The model is then tested
using a bootstrap subsampling procedure consisting of removal
without replacement of one record and using the surviving records
to train the model and predict the surface roughness parameter
of the removed record. When compared with the industry stan-
dard technique of assigning surface roughness parameters based
on published land use/land cover type, the RM regression mod-
els reduce the parameterization error by 93% (0.086–0.006) and
53% (1.299–0.610 m) for Manning’s n and effective aerodynamic
roughness length, respectively. These improvements will improve
water level and velocity predictions in coastal models.

Index Terms—Aerodynamic roughness, land cover, lidar,
Manning’s n, random forest (RM).

I. INTRODUCTION

T IDAL AND hurricane storm surge modeling provide
resource and emergency managers with actionable intel-

ligence that allows them to protect people, property, and the
environment. These elements are sensitive to changing condi-
tions on a variety of time scales and, in this context, are almost
always located in the nearshore and upland areas. Therefore,
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tidal and/or storm surge models must have sufficient resolution
and be parameterized correctly to compute accurate water lev-
els and velocities. This paper focuses on the latter requirement,
in particular, the parameterization of surface roughness.

The framework for this investigation is based on two-
dimensional (2-D), depth integrated, long-wave shallow water
flow models, such as the advanced circulation model for
oceanic, coastal, and estuarine waters (ADCIRC), [1], [2] and
TELEMAC-2D [3], [4]. Recent studies using these models
in the context of simulating astronomic tides and hurricane
storm surge have been conducted by Coughlan et al. [5],
Westerink et al. [6], Jones and Davies [7], Jones et al. [8],
Bunya et al. [9], and Dietrich et al. [10]. In terms of develop-
ing models of this type, surface roughness is the most important
input parameter for inundation behavior after topography [11]
as it influences both wind velocity and overland flow [12].
The surface roughness parameters most often used in con-
temporary tidal and storm surge modeling are Manning’s n
(bottom friction), surface canopy closure (reduction or elim-
ination of vertical wind effects), and effective aerodynamic
roughness length (also known as z0, reduction of horizontal
wind effects). The current methodology for specifying sur-
face roughness parameters across large scale models, especially
in the United States, relies on published land use/land cover
(LULC) data such as coastal change analysis project (C-CAP),
[13] and the national land cover dataset [14], [15]. Surface
roughness characteristics are then derived from these LULC
maps based on established “look-up” tables for each land cover
type and roughness parameter [6], [9]. This method is useful
because it is easily automated, straightforward to apply, and
scientifically defensible; these are important attributes as model
scope and resolution increase. However, Medeiros et al. deter-
mined that this method is insufficient due to the variability
of surface roughness within each LULC class, misclassifica-
tion errors within the LULC data, and errors arising from
parameterizing a continuous variable (roughness) using discrete
look-up tables [16]. Therefore, an improved method for com-
puting these parameters, especially bottom friction coefficient
and effective aerodynamic roughness length, is warranted.

Past research on the translation of field conditions into
numerical model parameters is extensive. While they have
made excellent contributions to our understanding of roughness
within natural flow fields, microscale studies investigating the
drag forces and flow resistance in and around individual rough-
ness elements, or very small patches of roughness elements,
such as Stephan and Gutknecht [17] and Wilson et al. [18], are
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not considered here in order to focus on regional scale parame-
terization techniques, mainly those that rely on remotely sensed
data. In particular, studies that investigated methods for using
remotely sensed data to describe above-ground vegetation are
especially relevant.

Remotely sensed data, particularly those acquired via satel-
lite, have proved to be effective in describing the properties
of the ground surface and vegetation. In a hybrid approach,
Straatsma and Baptist [19] fused lidar with multispectral
data to enhance the parameterization of spatially distributed
Chézy bottom friction coefficients (an approximate analog for
Manning’s n, the parameter used herein) in a floodplain. Three-
dimensional (3-D) lidar point cloud data have been shown to
contain abundant descriptive information about the landscape
[20]. In fact, Hyyppä and Hyyppä [21] demonstrated that lidar
point cloud data outperformed various optical remotely sensed
data (e.g., SPOT and Landsat Thematic Mapper) for extracting
measureable attributes from vegetation [22], [23]. Therefore,
3-D lidar point cloud data will be used in the parameterization
model proposed here. To further constrain the scope, large foot-
print or full waveform lidar studies, such as Drake et al. [24]
and Hollaus et al. [25], are not considered because small foot-
print lidar is more prevalent in tidal and storm surge modeling
due to its ability to describe topography. Since lidar data have
been integrated into nearly every modern flood mapping study,
it is advantageous to further exploit those data.

It is appropriate to note that the term airborne laser scan-
ning, or ALS, is synonymous with both laser altimetry and
lidar [26]. While the extraction of object surfaces is one of
the most beneficial uses of the 3-D lidar point cloud [27], in
terms of computing hydrodynamic model roughness param-
eters, measureable vegetation characteristics such as height
and frontal area (area occupied by vegetation as opposed to
empty space when looking parallel to the ground) are essen-
tial [28]. In fact, much of the earliest work in this field focused
on establishing that lidar could be used to measure vegeta-
tion and forest characteristics accurately and efficiently [29].
Nelson et al. [30] presented one of the earliest studies using air-
borne laser scanning (ALS) to determine vegetation properties,
in particular, the characteristics of a forest canopy. That study
was able to establish a relationship between canopy closure
(a relevant surface roughness parameter) and the penetration
capability of the airborne laser. Menenti and Ritchie [31] also
used ALS to estimate a surface roughness parameter. In that
study, an empirical relationship between the mean vegetation
height and standard deviation of vegetation height was able
to estimate the effective roughness length z0 at the water-
shed scale. De Vries et al. [32] applied a similar and slightly
more advanced technique to compute z0 based on the relation-
ship among obstruction height, frontal area, and planimetric
area (area of observation plot when looking from down from
above) developed by Lettau [33]. The standard deviation of
lidar elevations was also used by Davenport et al. [34] and
Hopkinson et al. [35] to estimate measured vegetation height;
this methodology was adapted to parameterize roughness for
river flood modeling by Cobby et al. [36]. Weltz et al. [37]
used ALS not only to approximate vegetation heights, but also
to distinguish among different plant communities. Ritchie [12]

further explored the application of this technology to hydro-
logic studies, including the measurement of surface roughness.
In contrast, Straatsma and Middelkoop [38] present some short-
comings of lidar data in terms of computing hydrodynamic
roughness including the lack of stem stiffness information and
dependence of the empirical relationships on land cover. These
shortcomings are important to note because this paper intends
to take a step toward disconnecting the parameterization of sur-
face roughness from categorical LULC types as well as plant
species.

To be practically applicable, methods for computing surface
roughness parameters for regional scale coastal hydrodynamic
models must also be automatable. Two primary criteria must
be satisfied in order to meet this requirement. First, it must be
relatively straightforward to translate the mathematics behind
the method into computer code. This motivates the researcher
to use the simplest possible mathematical model to describe
the empirical relationships between the lidar point cloud and
the ground truth data [39]. Second, the source data required by
the method must be available over the applicable areas of the
model domain. When these source data are remotely sensed, it
should provide adequate spatial coverage of the domain as well
as temporal relevance.

This paper presents a method that uses classified 3-D lidar
point cloud data to enhance the currently employed method
for parameterizing surface roughness. While comparing the
vegetation characteristics to lidar data at the tile or plot level
(i.e., on a defined patch of terrain) has been done in the past
(see Kato et al. [40] for a listing of previous studies), the
research presented here applies a roughness scheme proved
in geologic lidar-based roughness assessments [41], [42] to a
setting where vegetation and terrain are the primary contribu-
tors to surface roughness. The technique presented here utilizes
least squares regression planes to develop roughness values for
the terrain (ground points) and the overlying vegetation (non-
ground points). These roughness values are integrated with the
LULC-based parameterizations along with the field measured
surface roughness parameters of 24 field test sites in Florida
from Medeiros et al. [16] to derive empirical relationships for
Manning’s n and effective roughness length through multiple
linear regression (MLR) and random forest (RF) regression
approaches. Note that surface canopy closure is not examined
here because it is an already mature application from a remote
sensing standpoint (due in large part to its use in a wide variety
of scientific areas such as forestry) and its incorporation as a
surface roughness parameter in coastal models is, at this time,
understudied.

II. METHODS

The general methodology is as follows. First, we tabulated
the test sites with which lidar point cloud data, LULC clas-
sifications, and surface roughness values computed based on
field measurements were available. The latter of these data
represent the “true” surface roughness parameters associated
with each field test site and serve as the response variables
in the training/test protocol described below. Second, we pre-
processed the point cloud data for efficient data handling and
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Fig. 1. Location of field measurement sites.

computed statistics including the variance between the points
and the least squares regression planes. These data, explained
in more detail below, serve as the predictor variables. Then,
due to the limited amount of data, a bootstrapping algorithm
is employed, where the data from all but one test site is used
to train the parameterization model, which is then used to pre-
dict the remaining value. This is repeated for all 24 field test
sites. MLR and RF [43] approaches were used to determine the
empirical relationship between the measurable characteristics
of the plot and the surface roughness parameters.

A. Data Collection

1) Test Sites: This study uses the lidar data and field mea-
sured surface roughness terms associated with 24 test sites in
Florida. These sites are located in Volusia, Lake, and Franklin
counties and are all encompassed within land cover classes
that are prevalent in the coastal, storm surge prone regions of
Florida. A map showing the location of the test sites is included
as Fig. 1 and a summary of the test sites along with their land
cover classifications is presented in Table I. A detailed descrip-
tion of the field measurement process and surface roughness
calculations are presented by Medeiros et al. [16]; only relevant
details are reiterated here.

The sites are rectangular, measuring 30 m in the east–west
direction and 15 m in the north–south, following Arcement and
Schneider [44]. Some of these sites (e.g., those in Lake County)
are inland and not at risk of inundation by coastal surges, but are
included because their roughness conditions are representative
of coastal regions that are surge prone. The number of lidar
points on each site is shown in Table I.

2) Lidar Point Cloud: All lidar data were received in LAS
format, classified by the data acquisition vendor. The approach
used in this study relies only on the 3-D (xyz) position and
classification of the point as ground or nonground. All points
classified as open water were deleted from the dataset. For the

purposes of this study, all horizontal positions were projected
into UTM coordinates (meters) and elevations transformed to
the North American Vertical Datum of 1988 (NAVD88) and
converted to meters.

The data from Franklin County were acquired for the Florida
Division of Emergency Management (FDEM) in the summer of
2007 by Aero-Metric, Inc., and Terrapoint USA using Optech
3100 EA sensors. The horizontal accuracy is stated as 1 m at the
95% confidence level. The vertical accuracy is stated as 0.53
feet (0.16 m) in open terrain and 0.61 feet (0.19 m) in all land
cover categories, both at the 95% confidence interval. Positions
were delivered in the State Plane Coordinate System, Florida
North Zone (feet) referenced to the North American Datum of
1983—High Accuracy Reference Network (NAD83 HARN),
Geodetic Reference System 80 ellipsoid (GRS 80). Elevations
were delivered in feet referenced to the NAVD88.

The data from Volusia County were acquired for the Volusia
County Public Works Department in March of 2006 by
Woolpert, Inc., using a Leica ALS50 sensor. No accuracies
were reported in the metadata. Positions were delivered in the
State Plane Coordinate System, Florida East Zone (feet) refer-
enced to NAD83 HARN, GRS 80. Elevations were delivered in
feet referenced to NAVD88.

The data from Lake County were acquired for the Lake
County Board of County Commissioners, Department of
Information Technology, GIS Division in 2007 by Kucera
International Inc., using a Leica ALS50 sensor. The horizon-
tal accuracy is stated as 1 m at the 95% confidence level.
The vertical root-mean-square error (RMSE) is stated as 0.205
feet (0.062 m) that translates to a vertical accuracy of 0.402
feet (0.122 m) at the 95% confidence interval. Positions were
delivered in the State Plane Coordinate System, Florida North
Zone (feet) referenced to the North American Datum of 1983—
High Accuracy Reference Network (NAD83 HARN), Geodetic
Reference System 80 ellipsoid (GRS 80). Elevations were
delivered in feet referenced to the North American Vertical
Datum of 1988 (NAVD88).

B. Parameterization Model Development

In order to adequately explain the variability of the surface
roughness based on lidar point cloud data, two distinct statisti-
cal frameworks were considered: multiple regression and RM.
Using statistics derived from the xyz position and classifica-
tion of the lidar points, predictive parameterization models were
constructed as described below.

1) Lidar Point Cloud Statistics: Since it is not our intention
to run either of the parameterization models in an unsupervised
manner, we have selected specific descriptive statistics that have
an intuitive physical connection to surface roughness. In par-
ticular, we employ regression planes and the associated square
root of variances as an indicator of “roughness.”

In order to mimic the development of surface roughness
parameters, we divide the lidar point cloud into two groups
based on their point classification: ground and nonground.
Since both the terrain itself along with the obstacles lying on
it contribute to surface roughness, this protocol is warranted.
We then construct individual regression planes for ground and
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TABLE I
FIELD MEASUREMENT SITE LAND COVER TYPES AND LIDAR METADATA

nonground points separately as shown in Fig. 2 and (1) as
follows:
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where xi, yi, and zi are the coordinates of the lidar points
and β0, β1, and β2 are the coefficients of the regression plane
equation such that

z = β0 + β1x+ β2y. (2)

The relevant statistic is the square root of the variance
(for each class, ground, and nonground points), computed as
follows:

σ =

√√√√ 1

n

n∑
i=1

[zi − (β0 + β1xi + β2yi)] (3)

where n is the number of lidar points in each class. It is impor-
tant to note that the regression planes are computed based on
raw elevations for the ground points and detrended heights for
the nonground points. As a result, we have two quantitative

measures of surface roughness derived from the lidar data, i.e.,
square root of ground point elevation variance (σg) and square
root of nonground point height variance (σng).

Another important contributor to surface roughness is their
overall height. This is particularly true for effective aerody-
namic roughness length, as the mean height of the obstacles
is an explicit term in the calculation [33]. The distance between
the center of the ground and nonground regression planes is
used as an indicator for this contribution. First, we determine
the center point of the ground plane by computing the mean
x and y coordinates, then using the ground regression plane
equation to compute the z coordinate

xg =
1

ng

ng∑
i=1

xi (4)

yg =
1

ng

ng∑
i=1

yi (5)

zg = β0g + β1gxg + β2gyg (6)

where xg , yg, and zg are the coordinates of the center point of
the ground point regression plane; ng is the number of ground
points in the cloud; and β0g , β1g , and β2g are the coefficients of
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Fig. 2. Lidar point cloud and regression planes for a typical field measurement
site.

the ground point regression plane equation. Next, we compute
the distance from that point to the nonground regression plane

Hng =
|β1ngxg + β2ngyg − zg + β0ng|√

β2
1ng + β2

2ng + (−1)
2

(7)

where Hng is the distance between the ground and nonground
regression planes and β0ng , β1ng , and β2ng are the coefficients
of the nonground point regression plane equation.

Lastly, in order to preserve the scale of the surface rough-
ness parameters and ensure that the predicted values are within
realistic ranges, the parameters derived from LULC will also
be included as predictor variables. LULC classes for the test
sites are derived from the 2001 National Land Cover Dataset
(NLCD) [15] and the associated surface roughness parameters
are taken from Bunya et al. [9]. This paper is an application
of hurricane storm surge modeling that utilizes the subject of
surface roughness parameters and is representative of the state-
of-the-art. Although it uses a parameterization scheme based on
the 1992 NLCD [14], the surface roughness parameters associ-
ated with each class are similar, and throughout the literature on
this topic they are only modified in select cases where justified
by local conditions.

C. Surface Roughness Parameter Prediction

Two frameworks were considered for predicting surface
roughness parameters based on lidar point cloud statistics:
MLR and RM. Due to the limited amount of data from which
to build a predictive model, we employed a recursive bootstrap
subsampling procedure. In each iteration, a single data record
was removed from the training set and used as the test value.
The model was trained using the remaining 23 data records
and used to predict the values associated with the removed
record. This was repeated a total of 24 times in order to remove
each record once. The performance of the model is assessed by
aggregating the prediction error achieved during each iteration.

The MLR and RF models were implemented using the
statistical programming software R version 3.0.2 [45]. The con-
struction of the MLR model was straightforward using the three
variables derived above as predictors (independent variables)

TABLE II
STATISTICS DERIVED FROM LIDAR POINT CLOUD AT EACH SITE

and the surface roughness parameter as the response (dependent
variable). The RF model used a freely available R package ran-
domForest [46]. The only parameter changed from the default
when constructing the RF model was the number of trees,
which was set to 401 in order to ensure that enough trees were
generated to produce a rigorous and thorough regression. No
sensitivity tests were conducted to determine the optimal num-
ber of trees and the random number seed was set manually at
the start of each run to ensure repeatability of results.

III. RESULTS

The results of this study demonstrate that the lidar point
cloud produces surface roughness parameters that are much
closer to measured values than those derived from LULC data.

A. Generation of Lidar Statistics

As stated previously, the specific lidar statistics that serve as
predictor variables for the surface roughness parameters are:
square root of ground point elevation variance (σg), square root
of nonground point height variance (σng), and height to non-
ground regression plane (Hng). The values of these variables
for the test sites make up the training dataset and are shown in
Table II.

Using these predictor variables in the bootstrap sampling
procedure, the MLR and RF models both produced surface
roughness parameters that are more accurate than LULC, with
RF being the most accurate. These results are shown in Figs. 3
and 4.

Both MLR and RF techniques significantly outperform the
LULC lookup technique and produce errors that are an order
of magnitude smaller. In both MLR and RF cases, the usage of
the LULC derived parameter as a predictor variable resulted in
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Fig. 3. Manning’s n parameterization errors.

Fig. 4. Effective aerodynamic roughness length parameterization errors.

slightly increased error. This is further reinforced by the resid-
uals shown in Fig. 5. In almost every case, both MLR and RF
techniques have smaller residuals than LULC. This figure also
highlights the very slight improvement achieved by omitting the
LULC derived parameters from the MLR and RF techniques.

The reduction in error for the z0 parameter is not as severe
as for Manning’s n, although the RF technique still achieves
the greatest reduction in error. For this parameter, inclusion of
the values derived from LULC data caused an increase in the
RMSE for the RF technique and a decrease for the MLR tech-
nique. The less significant reduction in error for this parameter
in comparison to that for Manning’s n is further illustrated in
Fig. 5 (lower). It is evident that while the MLR and RF tech-
niques achieve a lower overall RMSE, there are many test sites
for which the LULC method results in a lower residual.

IV. DISCUSSION

As shown in the results, deriving Manning’s n and effec-
tive roughness length from lidar data represents a more locally
accurate technique. The increase in accuracy is attributed to the
ability of the lidar point cloud, and more technically, the phys-
ically connected statistics we have derived from it, to describe
the actual in situ configuration and density of the terrain and

obstructions. In this context, “locally accurate” means that the
parameter at each specific location will be closer to its true, or
field measured value. By extension, the global parameteriza-
tion will also be more accurate. However, the significance of
the importance of local accuracy cannot be overstated.

With the LULC technique, each pixel of a particular LULC
class is considered to be identical and an average representa-
tion of the surface roughness of that LULC type. Inherent in
this technique is the acceptance of the fact that the continu-
ity and resolution of the parameter is coarsened. Stated another
way, by using the LULC technique, a modeler exchanges max-
imized local parameter accuracy for a global parameterization
accuracy that is acceptable when averaged over the entire model
domain. In hurricane storm surge modeling, the domain is typ-
ically of a geographic scope in which millions of computation
points are to be parameterized with surface roughness. In this
case, the global mean parameterization error of the LULC tech-
nique over the domain would converge to a minimum. This is a
direct consequence of assigning the surface roughness parame-
ters that represent the “average” conditions to each LULC class;
with a large enough dataset, the “average” conditions emerge
and present the illusion of parameterization accuracy.

If a study were able to field measure a sufficiently large
sample of test sites, the error generated by the LULC param-
eterization technique would converge to a minimum as the
number of sites increased. However, a technique that accounts
for the local structure of the terrain, such as those presented
herein, would generate an error distribution that was essentially
flat. This is one of the more subtle points evident from careful
examination of Fig. 5. The MLR and RF techniques produce a
residual graph that is flatter than that of the LULC technique for
both the Manning’s n and z0 parameter, although this concept
is far more obvious in the case of Manning’s n. The lack of flat-
ness in Fig. 5 (lower) is primarily driven by the large residuals
(for all methods) at site 16. This site suffers from a particularly
severe misclassification in the LULC data. As shown in Table I,
site 16 is classified as developed, open space. Fig. 6(a) shows
an aerial photograph of the site and it is apparent that the site
is heavily wooded. This is confirmed in the ground level site
photograph shown in Fig. 6(b). The result is a significant under
prediction of z0 parameter at this site for the LULC method,
which the parameterization models presented herein are able to
improve by 56.5%.

This leads to the fundamental motivation of this study. The
overland flow conditions (i.e., hurricane storm surge or river
flooding) are only affected by the local roughness conditions.
While the overall hydrodynamics are influenced by even a slight
perturbation anywhere in the domain, an incoming surge at a
section of coastline is not going to experience any drag force
from the roughness conditions 100 km away. The mean param-
eterization error over the domain is not as important as the local
error with respect to overland flow conditions. Therefore, the
method with the more consistent and smaller error on a site by
site basis should be favored over one with a small mean error
over the entire domain. The method proposed herein has the
benefit of exceeding the LULC technique on both counts.

While the performance of the proposed technique has clearly
demonstrable advantages over the LULC technique, there are
obvious limitations that should be carefully considered. While
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Fig. 5. Residual error for prediction of Manning’s n (upper) and effective aerodynamic roughness length (lower).

Medeiros et al. [16] emphasize that every effort was made to
select field sites that generally captured the range of terrain
conditions in hurricane storm surge prone regions of Florida,
the computed surface roughness parameters fall within a much
narrower range than traditional parameterizations. This is espe-
cially true of Manning’s n (see Fig. 5). This could be attributed
to two factors: 1) error in field measurements and 2) subse-
quent computations; or errors in the Manning’s n look-up tables
associated with various LULC classification systems. Random
errors in field measurements cannot be accurately quantified in
this case because the intensive labor required in the field makes
repeat measurements impractical. Systematic errors were min-
imized by utilizing established protocols along with averaging
of multiple independent estimations when required. It is more
likely that the Manning’s n results falling in a narrow band rein-
forces the thesis of this study, namely that look-up tables based
on LULC data account for almost none of the in situ variabil-
ity of surface roughness. Instead, it is apparent that the LULC
technique insists on imposing the classical parameter range.

Another well-established feature of the Manning’s n rough-
ness coefficient is that it is dependent on depth. Models that are
typically used for simulating hurricane storm surge are deter-
ministic and modify the shear stress due to bottom friction
as a quadratic function of depth during run-time. Since the

technique proposed here is directed at this specific applica-
tion, no treatment of the depth dependence is conducted; the
Manning’s n roughness coefficients computed using this tech-
nique serve as the “base” Manning’s n that will be adjusted for
depth internally within any particular numerical model.

Also of concern with the parameterization of Manning’s n
and effective roughness length in this context is the temporal
discontinuity between the field measurements and the lidar data
acquisition. The technique proposed here assumes that the lidar
data accurately reflect the field measured conditions. While we
can state that there were no major developments in the field
site areas in the time between the lidar data acquisition (circa
2007) and the field measurements (circa 2010), it is possible
that natural processes may have altered the landscape in the
interim. This would lead to errors in the parameterization that
would be evident in the residual graphs shown in Fig. 5. Since
there are none apparent, we assume that this factor had minimal
impact on the training and performance of the parameterization
models. In particular, the impact is further minimized by the
single site removal bootstrap subsampling procedure employed
to train the parameterization models.

Lastly, there is a notable omission in the field measurements
that could limit the applicability of the method in production
surge studies, namely the lack of urban or developed sites.
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Fig. 6. (a) Aerial image and (b) ground level photograph of field site 16.

Storm surge is the major driver of damage during tropical
storms and for this reason, it is essential to understand the
physics of flow through built environments. This is especially
important for the effective roughness length parameter. The
wind has a significant influence on the behavior of overland
storm surge; this is compounded in the highly anisotropic built
environment since buildings often block wind in one direction
while in another the spaces between them permit and often
accelerate free wind flow. The techniques developed in this
study are applicable to urban settings with no adjustment to
the method other than expanding the training data to include a
sufficient number of sites representing the range of urban devel-
opment conditions in surge prone regions. This is a primary
objective of future work.

V. CONCLUSION

A novel technique for parameterizing surface roughness
in coastal models using airborne lidar data is presented.
Two important parameters to coastal overland flow dynamics,
Manning’s n (bottom friction) and effective aerodynamic
roughness length (wind speed reduction), were computed based
on an RM regression model trained using field measurements
from 24 sites in Florida fused with georegistered lidar point
cloud data. The lidar point clouds for each test site were sep-
arated into ground and nonground classes and the height, or
elevation, variance from the least squares regression plane was
computed, along with the height of the nonground regression

plane. These statistics served as predictor variables in the
parameterization model that was tested using a bootstrap sub-
sampling procedure consisting of removal without replacement
of one record and using the surviving records to train the model
and predict the surface roughness parameter of the removed
record. When compared with the industry standard technique
of assigning surface roughness parameters based on published
land use/land cover type, the RM regression models reduced the
parameterization error by 93% (0.086–0.006) and 53% (1.299–
0.610 m) for Manning’s n and effective aerodynamic roughness
length, respectively.

This work represents the first step in what is hopefully a
significant advance in coastal modeling. We now have the
capability to remotely sense the actual in situ structure of
the terrain quickly and accurately, which enables coastal
modelers to more correctly parameterize surface roughness. It
is important that future work clarify the role of surface canopy
closure and rigorously connect that parameter to the governing
equations for wind stress on the water surface. Models that
incorporate these types of data represent substantial increases
in local parameterization accuracy, which is key to obtaining
accurate model results.
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