ENSO and meridional modes: A null hypothesis for Pacific climate variability
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.


This Document Has Been Replaced By:



This Document Has Been Retired


Up-to-date Information

This is the latest update:

ENSO and meridional modes: A null hypothesis for Pacific climate variability
  • Published Date:


  • Source:
    Geophysical Research Letters, 42(21), 9440-9448.
Filetype[PDF-2.75 MB]

  • Description:
    Pacific low-frequency variability (timescale > 8 years) exhibits a well-known El Nino-like pattern of basin-scale sea surface temperature, which is found in all the major modes of Pacific decadal climate. Using a set of climate model experiments and observations, we decompose the mechanisms contributing to the growth, peak, and decay of the Pacific low-frequency spatial variance. We find that the El Nino-like interdecadal pattern is established through the combined actions of Pacific meridional modes (MM) and the El Nino-Southern Oscillation (ENSO). Specifically, in the growth phase of the pattern, subtropical stochastic excitation of the MM energizes the tropical low-frequency variance acting as a red noise process. Once in the tropics, this low-frequency variance is amplified by ocean-atmospheric feedbacks as the pattern reaches its peak phase. At the same time, atmospheric teleconnections distribute the variance from the tropics to the extratropics, where the pattern ultimately decays. In this stochastic red noise model of Pacific climate, the timescale of the extra-tropical/tropical interactions (1-2 years) permits the stochastic excitation of the ENSO-like pattern of decadal and interdecadal variance.
  • Document Type:
  • Main Document Checksum:
  • File Type:
  • Supporting Files:
    No Additional Files
No Related Documents.

You May Also Like: