U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Enhanced interactions of Kuroshio Extension with tropical Pacific in a changing climate



Details

  • Journal Title:
    Scientific Reports
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Quasi-decadal climate of the Kuroshio Extension (KE) is pivotal to understanding the North Pacific coupled ocean–atmosphere dynamics and their predictability. Recent observational studies suggest that extratropical-tropical coupling between the KE and the central tropical Pacific El Niño Southern Oscillation (CP-ENSO) leads to the observed preferred decadal time-scale of Pacific climate variability. By combining reanalysis data with numerical simulations from a high-resolution climate model and a linear inverse model (LIM), we confirm that KE and CP-ENSO dynamics are linked through extratropical-tropical teleconnections. Specifically, the atmospheric response to the KE excites Meridional Modes that energize the CP-ENSO (extratropicstropics), and in turn, CP-ENSO teleconnections energize the extratropical atmospheric forcing of the KE (tropicsextratropics). However, both observations and the model show that the KE/CP-ENSO coupling is non-stationary and has intensified in recent decades after the mid-1980. Given the short length of the observational and climate model record, it is difficult to attribute this shift to anthropogenic forcing. However, using a large-ensemble of the LIM we show that the intensification in the KE/CP-ENSO coupling after the mid-1980 is significant and linked to changes in the KE atmospheric downstream response, which exhibit a stronger imprint on the subtropical winds that excite the Pacific Meridional modes and CP-ENSO.
  • Keywords:
  • Source:
    Scientific Reports, 11(1)
  • DOI:
  • ISSN:
    2045-2322
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:6ceb44a7ece42d69374406ea4f28a662a1489338995acfc0569bd35227d70b1f
  • Download URL:
  • File Type:
    Filetype[PDF - 5.37 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.