The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Pathogen surveillance in wild bottlenose dolphins Tursiops truncatus
-
2015
-
-
Source: Diseases of Aquatic Organisms, 116(2), 83-+.
Details:
-
Journal Title:Diseases of Aquatic Organisms
-
Personal Author:
-
NOAA Program & Office:
-
Description:The number and prevalence of diseases is rapidly increasing in the marine ecosystem. Although there is an increase in the number of marine diseases observed world-wide, current understanding of the pathogens associated with marine mammals is limited. An important need exists to develop and apply platforms for rapid detection and characterization of pathogenic agents to assess, prevent and respond to disease outbreaks. In this study, a broad-spectrum molecular detection technology capable of detecting all sequenced microbial organisms, the Lawrence Livermore Microbial Detection Array, was used to assess the microbial agents that could be associated with wild Atlantic dolphins. Blowhole, gastric, and fecal samples from 8 bottlenose dolphins were collected in Charleston, SC, as part of the dolphin assessment effort. The array detected various microbial agents from the dolphin samples. Clostridium perfringens was most prevalent in the samples surveyed using the microarray. This pathogen was also detected using microbiological culture techniques. Additionally, Campylobacter sp., Staphylococcus sp., Erwinia amylovora, Helicobacter pylori, and Frankia sp. were also detected in more than one dolphin using the microarray, but not in culture. This study provides the first survey of pathogens associated with 3 tissue types in dolphins using a broad-spectrum microbial detection microarray and expands insight on the microbial community profile in dolphins.
-
Source:Diseases of Aquatic Organisms, 116(2), 83-+.
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: