Chemical contaminants in surficial sediment in Coral and Fish Bays, St. John, US Virgin Islands
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Chemical contaminants in surficial sediment in Coral and Fish Bays, St. John, US Virgin Islands

Filetype[PDF-1.52 MB]



Details:

  • Journal Title:
    Marine Environmental Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Land based sources of pollution have the potential to negatively impact coral reef ecosystems. Many coral systems, including environmentally sensitive marine protected areas, do not have assessments of their chemical contaminant status (magnitude and extent). Without a status assessment, it is impossible to measure change in a system. This study presents surficial sediment data from Coral and Fish Bays (St. John, US Virgin Islands (USVI)). Portions of these bays are included in Virgin Islands National Park, and Virgin Islands Coral Reef National Monument. A suite of analytes (PCBs, PAHs, pesticides, heavy metals, butyltins) was quantified and compared against other regional data and against previously published sediment quality guidelines (SQG). Contamination from toxic contaminants in the system was generally low when compared to other similar studies and potential toxicity thresholds (SQG). Exceptions to this were copper and total chlordane which exceeded the Effects Range Low (ERL) sediment quality guideline, indicating possible sediment toxicity. This assessment will be useful to coastal managers for tracking environmental change, and ensuring that this marine protected area remains relatively free from toxic contamination. Published by Elsevier Ltd.
  • Source:
    Marine Environmental Research, 112, 1-8.
  • DOI:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1