U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Impacts of Extratropical Transition on Tropical Cyclone Tornadoes



Public Access Version Available on: May 01, 2026, 12:00 AM
Please check back on the date listed above.

Details

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The impact of extratropical transition (ET) on tropical cyclone (TC) tornadoes is not fully understood with no prior tornado climatologies for ET cases. Hence, this study investigates how ET impacts tornadoes and convective-scale environments within TCs using multidecadal tornado and radiosonde data from North Atlantic TCs. This research divides ET into three phases: tropical (i.e., pre-ET), transition (i.e., during ET), and extratropical (i.e., post-ET). These results show that the largest portion of tornadoes occurs before and during ET, with the greatest frequencies during ET. As TCs progress through ET, tornado location shifts north and east in the United States but farther south or more strongly downshear right relative to the TC center. Tornadoes also tend to occur later in the day and are more likely to be associated with greater damage. Evaluation of radiosondes shows that the downshear-right quadrant of the TC is frequently the most favorable for tornado production, with sufficient entrainment CAPE (ECAPE) and strong storm-relative helicity (SRH). Specifically, the downshear-right quadrant shows slower decreases in ECAPE (associated with synoptic-scale cooling and drying) and increased SRH and associated lower-tropospheric vertical wind shear through ET, relative to the other quadrants relative to the deep-tropospheric (i.e., 850–200-hPa) vertical wind shear vector. These results inform the physical model and prediction of ET-related TC structure, both in terms of their convective-scale environments and subsequent hazard production.
  • Source:
    Monthly Weather Review, 153(11), 2333-2352
  • DOI:
  • ISSN:
    0027-0644 ; 1520-0493
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:217517cf1b1343ac7979922b00af6a3276769b23b17e102257012bfbad686a984cbc9dc4ead34eda22dae78db9710864e69e7147862332fb4ee7cf9b51f44611
  • File Type:
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.