U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Polar Region Bathymetry: Critical Knowledge for the Prediction of Global Sea Level Rise



Details

  • Journal Title:
    Frontiers in Marine Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The ocean and the marine parts of the cryosphere interact directly with, and are affected by, the seafloor and its primary properties of depth (bathymetry) and shape (morphology) in many ways. Bottom currents are largely constrained by undersea terrain with consequences for both regional and global heat transport. Deep ocean mixing is controlled by seafloor roughness, and the bathymetry directly influences where marine outlet glaciers are susceptible to the inflow relatively warm subsurface waters - an issue of great importance for ice-sheet discharge, i.e., the loss of mass from calving and undersea melting. Mass loss from glaciers and the Greenland and Antarctic ice sheets, is among the primary drivers of global sea-level rise, together now contributing more to sea-level rise than the thermal expansion of the ocean. Recent research suggests that the upper bounds of predicted sea-level rise by the year 2100 under the scenarios presented in IPCC’s Special Report on the Ocean and Cryosphere in a Changing Climate (SROCCC) likely are conservative because of the many unknowns regarding ice dynamics. In this paper we highlight the poorly mapped seafloor in the Polar regions as a critical knowledge gap that needs to be filled to move marine cryosphere science forward and produce improved understanding of the factors impacting ice-discharge and, with that, improved predictions of, among other things, global sea-level. We analyze the bathymetric data coverage in the Arctic Ocean specifically and use the results to discuss challenges that must be overcome to map the most remotely located areas in the Polar regions in general.
  • Source:
    Frontiers in Marine Science, 8
  • DOI:
  • ISSN:
    2296-7745
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:0a73033bad73212de640df08baf758a4448c3001187ceb6a56350ff64b071112849e5d4c10e68495cbf681f891415a262aac722136e75d49a50f36b411c7ef3e
  • Download URL:
  • File Type:
    Filetype[PDF - 809.36 KB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.