U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Assessing the Impact of Lightning Data Assimilation in the WRF Model



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Atmosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Recent advancements in computational technologies have enhanced the importance of meteorological modeling, driven by an increased reliance on weather-dependent systems. This research implemented a lightning data assimilation technique to improve short-term weather forecasts in South America, potentially refining initialization methods used in meteorological operation centers. The main goal was to implement and enhance a data assimilation algorithm integrating lightning data into the WRF model, assessing its impact on forecast accuracy. Focusing on southern Brazil, a region with extensive observational infrastructure and frequent meteorological activity, this research utilized several data sources: precipitation data from the National Institute of Meteorology (INMET), lightning data from the Brazilian Lightning Detection Network (BrasilDAT), GOES-16 satellite images, synoptic weather charts from the National Institute for Space Research (INPE), and initial conditions from the GFS model. Employing the WRF-ARW model version 3.9.1.1 and WRFDA system version 3.9.1 with 3DVAR methodology, the study conducted three experimental setups during two meteorological events to evaluate the assimilation algorithm. These included a control (CTRL) without assimilation, a lightning data assimilation (LIGHT), and an adaptive humidity threshold assimilation (ALIGHT). Results showed that the lightning data assimilation system enhanced forecasts for large-scale systems, especially with humidity threshold adjustments. While it improved squall line timing and positioning, it had mixed effects when convection was thermally driven. The lightning data assimilation methodology represents a significant contribution to the field, indicating that using such alternative data can markedly improve short-term forecasts, benefiting various societal sectors.
  • Source:
    Atmosphere, 15(7), 826
  • DOI:
  • ISSN:
    2073-4433
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:f34841d01f8705d5bd3a49b365021cd914a76d3e7c17db070e6eec5e1fd76ccf1a03b97264a35850af71b963f29e78a54e335eb8e93961bab8af34c2394c53a1
  • Download URL:
  • File Type:
    Filetype[PDF - 22.94 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.