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Abstract: Recent advancements in computational technologies have enhanced the importance of
meteorological modeling, driven by an increased reliance on weather-dependent systems. This
research implemented a lightning data assimilation technique to improve short-term weather forecasts
in South America, potentially refining initialization methods used in meteorological operation
centers. The main goal was to implement and enhance a data assimilation algorithm integrating
lightning data into the WRF model, assessing its impact on forecast accuracy. Focusing on southern
Brazil, a region with extensive observational infrastructure and frequent meteorological activity, this
research utilized several data sources: precipitation data from the National Institute of Meteorology
(INMET), lightning data from the Brazilian Lightning Detection Network (BrasilDAT), GOES-16
satellite images, synoptic weather charts from the National Institute for Space Research (INPE),
and initial conditions from the GFS model. Employing the WRF-ARW model version 3.9.1.1 and
WRFDA system version 3.9.1 with 3DVAR methodology, the study conducted three experimental
setups during two meteorological events to evaluate the assimilation algorithm. These included
a control (CTRL) without assimilation, a lightning data assimilation (LIGHT), and an adaptive
humidity threshold assimilation (ALIGHT). Results showed that the lightning data assimilation
system enhanced forecasts for large-scale systems, especially with humidity threshold adjustments.
While it improved squall line timing and positioning, it had mixed effects when convection was
thermally driven. The lightning data assimilation methodology represents a significant contribution
to the field, indicating that using such alternative data can markedly improve short-term forecasts,
benefiting various societal sectors.

Keywords: nudging; BrasilDAT; 3DVAR; lightning data assimilation

1. Introduction

Over recent decades, society’s reliance on weather-sensitive technologies has increased,
as has the expansion into areas prone to environmental risks, amplifying the need for
precise meteorological modeling. Advancements in computing technology have enabled
the development of more accurate atmospheric models, which are essential for the growing
reliance on weather forecasts across various economic sectors.

Weather forecasts are typically generated using a set of equations that encompass the
laws of motion and conservation principles, including mass and energy. These equations
lack analytical solutions, necessitating the use of numerical methods in a process commonly
referred to as Numerical Weather Prediction (NWP).
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Addressing several aspects of modeling can enhance weather forecasting. These
include refining the model’s core and settings, such as spatial resolution and discretization
techniques; enhancing the physics through more accurate parameterizations; improving
data assimilation methods; and utilizing ensemble forecasting approaches.

This study focuses on how data assimilation, specifically the integration of new data
sources, can refine the initial conditions of weather models, thereby improving forecast
accuracy. Data assimilation involves merging observational data with model-generated es-
timates (the background or first guess) to produce adjusted initial conditions (the analysis),
which can lead to better forecasts [1,2].

NWP is highly sensitive to its initial conditions. The complexity and high resolution
of these models mean that simply interpolating observational data does not sufficiently
inform the initial conditions. Thus, it is crucial to use a background derived from other
models or previous runs [1,2]. The integration of observational data helps correct the
model’s background, reducing cumulative errors in the simulation.

The absence of comprehensive observational data often leads models to start with
inaccurate initial and boundary conditions, resulting in spin-up issues [3]. However, incor-
porating these data at the beginning of simulations can partially mitigate these issues [4].

The Weather Research and Forecasting (WRF) model and its Data Assimilation System
(WRFDA) were utilized for all experiments conducted in this study. The WRF model is a
system widely employed in research and operational settings, offering a broad range of
physical and dynamic parameterizations suitable for various geographic settings [5,6].

Various assimilation techniques have been explored in atmospheric science, including
the successive corrections method [7], nudging [8,9], optimal interpolation [10,11], varia-
tional methods [12], Kalman filter [13], and hybrid methods [14,15]. The WRFDA system
supports variational methods (3DVAR, 4DVAR) and hybrid options.

This study delves into the unique benefits of incorporating lightning data into weather
models. Lightning is an excellent indicator of severe convection and is less influenced
by geographic features than radar data. Continuous lightning monitoring can provide
valuable insights into the dynamics and microphysics of storm clouds [16–19].

Historically, lightning data were first used to improve precipitation forecasts and other
variables indirectly. Recent advances have enabled more direct integration of lightning
data into models, such as through adjustments to observation operators in variational and
hybrid methods [20–22].

Various lightning detection networks operate globally, each with different detection
capabilities and accuracies, ranging from low-frequency networks with global coverage
to high-frequency networks like the Lightning Mapping Array and the Geostationary
Lightning Mapper aboard the Geostationary Operational Environmental Satellites (GOES-
16), which utilizes the optical spectrum for detection from space [23].

This research marks a pioneering effort to implement a lightning data assimilation
technique to enhance short-term weather forecasting in South America. The potential
benefits of using lightning data, including its high spatial and temporal resolution, are
explored in depth.

The primary objective of this study was to develop and refine a data assimilation algo-
rithm that incorporates lightning data into the WRF model. The effectiveness of lightning
data assimilation was evaluated by comparing experimental results with observations,
focusing on the impact on short-term forecasts (up to three hours).

2. Background

Several theories have attempted to explain the formation of lightning, with the con-
vective theories [24], inductive theories [25], non-inductive charging processes [26], and
quasi-liquid layer theories [27,28] being the most prevalent. These theories elucidate how
various atmospheric conditions and particle interactions contribute to charge separation
and ultimately to lightning discharge.
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Thunderstorm clouds, particularly cumulonimbus, exhibit significant vertical devel-
opment and intense vertical motions. These motions lift humid air to higher altitudes,
cooling and condensing it into ice particles. The process of cloud electrification is complex
and not entirely understood but generally involves interactions between graupel and ice
crystals [29,30].

Integrating lightning data into weather models is predicated on a detailed understand-
ing of these microphysical processes. The assimilation of lightning data, which includes
both intracloud (IC) and cloud-to-ground (CG) lightning types, can enhance the initializa-
tion of models by providing critical information about the atmospheric state that is not
available from conventional meteorological data sources. These data are particularly valu-
able due to their direct relationship with atmospheric instability and convection, offering
unique insights into storm dynamics and potential weather threats [16,31,32].

The Brazilian Lightning Detection Network (BrasilDAT), a primary lightning detection
system in Brazil, operates in low and very low frequencies (LF/VLF). This system uses the
time-of-arrival (TOA) method to triangulate the location of lightning discharges, accurately
detecting both the polarity and intensity of the lightning flash [33,34]. This system’s high
detection efficiency ranges from 85 to 90% for CG and from 50 to 60% for IC.

The atmospheric processes that lead to lightning formation are intricately linked to the
dynamics within thunderclouds. Understanding these processes is crucial for effectively
incorporating lightning data into weather prediction models. The assimilation of these data
can not only enhance the initialization of these models but also contribute to more accurate
and reliable weather forecasting, leveraging the unique insights provided by lightning
activity to anticipate and respond to meteorological events more effectively.

A pioneering study by Alexander et al. [35] marked the onset of utilizing total light-
ning data—comprising both IC and CG flashes—without distinction, aiming to improve the
models’ initial atmospheric conditions. This study employed various data sources, includ-
ing satellite, infrared, and microwave sensors alongside continuous lightning observations.
The study demonstrated a robust correlation between lightning data and precipitation
rates, which varies regionally. By incorporating a diverse set of data, including those
from lightning, their simulations effectively captured the dynamics of an extratropical
cyclone in the Gulf of Mexico, showcasing enhanced precipitation rates and more accurate
cyclone modeling.

In a related effort, Chang et al. [36] delved into a cyclogenesis event in the Gulf of Mex-
ico using a dataset that included long-range lightning detection systems and satellite-based
sensors. This approach allowed for a nuanced analysis of convective activity, particularly
in areas beyond the reach of traditional meteorological radars. Their integration of these
varied data sources into the mesoscale model (MM5) and the application of a novel al-
gorithm led to significant improvements in forecasting accuracy, especially in predicting
precipitation patterns.

Building on these foundations, subsequent studies have explored the potential of
modifying physical parameterizations within weather models to incorporate lightning
data effectively. Mansell et al. [37], for instance, adapted the Kain–Fritsch convective
parameterization scheme within the Coupled Ocean–Atmosphere Mesoscale Prediction
System (COAMPS). This modification allowed the scheme to be triggered by lightning data,
which notably enhanced the model’s depiction of atmospheric phenomena such as cold
pools, thereby improving overall forecast accuracy during the initial hours of simulations.

Further refining these methods, research by Qie et al. [38] and Fierro et al. [39] applied
nudging functions to adjust the microphysics schemes within cloud systems based on
lightning data. These adjustments led to significant improvements in the simulation of
convective activities and precipitation fields, particularly in short-term forecasts.

The continuous evolution of lightning data assimilation techniques, especially through
nudging methodologies, has been shown to significantly enhance the accuracy of weather
prediction models. These techniques, which adjust model parameters in real time based
on lightning observations, have improved the representation of atmospheric processes,
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addressing the challenge of balancing induced convection within models to prevent pro-
longed, unrealistic weather patterns.

Moreover, studies like those conducted by Dixon et al. [40] and Chen et al. [41] have
furthered the application of lightning data in weather modeling. Dixon et al. used high-
resolution deterministic and ensemble forecasts to demonstrate that nudging techniques,
which included moisture adjustments based on lightning data, could enhance convective
system predictions across the United States. Chen et al. developed a specialized lightning
data assimilation scheme tailored to the dynamics of squall lines, demonstrating the poten-
tial of such advanced methodologies to significantly reduce the spin-up time of models
and enhance short-term forecast accuracy.

By providing detailed insights into convective processes and enabling more precise
adjustments to weather models, lightning data assimilation stands as a transformative ap-
proach in the ongoing quest to enhance the accuracy and reliability of weather forecasting.

Table 1 shows some of the main studies and their characteristics in the field of lightning
data assimilation.

Table 1. Characteristics of the main studies in the lightning data assimilation research field.

Ref. Year Study Area Data Source Model Assimilation Technique

[35] 1999 Mexican Gulf NLDN MM5 Nudging (precipitation rate)
[36] 2001 Mexican Gulf STARNET-1; LIS MM5 Nudging (precipitation rate)
[18] 2005 Europe and Africa ZEUS SKIRON/ETA Nudging (humidity)
[37] 2007 Midwest USA NLDN; LMA COAMPS Nudging (convective scheme)
[42] 2009 North Pacific Ocean LIS; OTD MM5 Nudging (convective scheme)
[16] 2012 Midwest USA ENTLN WRF Nudging (microphysics scheme)
[22] 2012 Alabama WWLLN WRF Observation operator (CAPE)
[43] 2013 Southern France LINET MM5 Nudging (convective scheme)
[21] 2013 USA ENTLN WRF Observation operator (CAPE)
[38] 2014 North China SAFIR WRF Nudging (microphysics scheme)
[39] 2014 Northeast USA ENTLN WRF Nudging (microphysics scheme)
[20] 2014 East USA WWLLN WRF Observation operator (ωmax)
[44] 2015 USA ENTLN WRF Nudging (humidity)
[45] 2015 East USA ENTLN; USPLN WRF Nudging (humidity)
[40] 2016 Midwest and eastern of USA WWLLN WRF Nudging (humidity)
[46] 2018 East China SAFIR WRF Nudging (humidity)
[41] 2019 Northern China BLNET WRF Nudging (microphysics scheme)
[47] 2022 Southern China ENTLN WRF Nudging (humidity)

3. Material and Methods
3.1. Data, Model Settings, and Experiment Design

This study utilized a diverse array of data sources to effectively implement and
evaluate the assimilation process. We focused on two specific days known for the occurrence
of meteorological systems characterized by significant lightning activity.

The geographic focus of this research is the southern region of Brazil, as depicted in
Figure 1a. This region is not only well equipped with various observational stations but
also frequently experiences meteorological systems conducive to the formation of intense
storms accompanied by substantial lightning activity. In subsequent references, the green
square highlighted in Figure 1b will be referred to as the evaluation area. This area was
selected with the goal of minimizing errors related to simulation borders and/or data
extrapolations. Meanwhile, the larger region shown in Figure 1b will be referred to as the
study area or the simulation area.

A study discussing the WRF model’s performance using a high-resolution spatial grid
for a similar region can be found in [48].

To assess the simulations, precipitation data were sourced from approximately
600 meteorological surface stations provided by the National Institute of Meteorology



Atmosphere 2024, 15, 826 5 of 34

(INMET). The number of stations analyzed varied depending on the time of observation
(Figure 1b).
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Figure 1. (a) The study area, i.e., the simulation domain, is highlighted by a yellow square centered
over Brazil and covers an extensive part of the southeast, south, and center–west regions (major
cities marked in red). (b) The spatial distribution of observational data within the WRF simulation
domain is shown, with the green square over most of São Paulo state indicating the evaluation area
for assessing the impact of the assimilation process.

Lightning data, a critical component of this study, were provided by BrasilDAT
through the Atmospheric Electricity Group of the National Institute for Space Research
(INPE/ELAT). These data were essential for calculating the flash rate needed to adjust the
water vapor mixing ratio variable in the assimilation algorithm (see Section 3.2), thus en-
hancing the initial conditions. Additionally, it was instrumental in analyzing and assessing
the behavior of various variables simulated by the WRF model.

Satellite imagery from GOES-16 was also integral to tracking the meteorological
systems impacting the study area, allowing for the identification of the events and the
regions most affected.

Synoptic weather charts from the Center for Weather Forecasting and Climate Stud-
ies (CPTEC) at INPE were utilized to accurately identify the meteorological conditions
associated with each system studied.

Data from the Global Forecast System (GFS), provided by the Computational and
Information Systems Laboratory of the University Corporation for Atmospheric Research,
were used for model initialization [49].

This study utilized version 3.9.1.1 of the WRF-ARW model, which was officially
released on 28 August 2017 [50]. The simulations incorporated a comprehensive set of
parameterizations to accurately model various atmospheric processes: the Yonsei University
Scheme for the Planetary Boundary Layer [51], the Thompson Scheme for Microphysics [52],
the Unified Noah Land Surface Model for land surface processes [53], and the RRTMG for
both shortwave and longwave radiation schemes [54].

Furthermore, cumulus parameterization was deactivated to allow the model to explic-
itly resolve convection. It is important to point out that to explicitly resolve convection it is
necessary to run the model with a resolution of at least 3 km, which was not the case in this
study. Rather, this was an attempt to partially resolve convection in the region and avoid
the use of parameterizations that are not optimized for the study area. The implications of
this choice are discussed Section 4.

The configuration of the simulations involved a single domain encompassing a
149 × 189 grid point, latitudes ranging from −29.1184◦ S to −17.1805◦ S, and longitudes
ranging from −57.5814◦ W to −41.0482◦ W. The grid spacing varied longitudinally between
0.087◦ and 0.088◦ and latitudinally between 0.077◦ and 0.084◦, achieving a horizontal reso-
lution of approximately 9 km. The vertical configuration included 50 levels, extending up
to 50 hPa, and the simulations employed an adaptive timestep to optimize computational
efficiency (Figure 2 provides a detailed view of the domain).
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Figure 2. Terrain elevation in meters (MSL) within the simulation domain outlined by a yellow square
in Figure 1a.

This specific domain was chosen to align with the spatial distribution of BrasilDAT
sensors and the meteorological observation stations illustrated in Figure 1b. The selected
region is known for its dynamic meteorological activity throughout the year, influenced by
a diverse array of weather systems such as fronts, mesoscale convective systems (MCS),
low-level jets, convergence moisture zones, and cyclones. This diversity allows for an
in-depth analysis of different atmospheric configurations under well-observed conditions.

For data assimilation, the 3DVAR method was applied using the WRFDA system
version 3.9.1, released on 17 August 2017. The assimilation window spanned 30 min,
covering 15 min before and after the analysis time.

The assimilation process also utilized a generic background error covariance matrix
(BE), designated as CV3, provided by the WRFDA for regional applications. This matrix,
crucial in influencing the outcome of the assimilation, was originally generated by the
National Centers for Environmental Prediction (NCEP) using the National Meteorological
Center (NMC) method. This method calculates the difference between 48 and 24 h forecasts
from the GFS model to model vertical covariance, as detailed in Wang et al. [55].

This research was structured around three distinct experiments, each designed to
evaluate the implemented assimilation algorithm during two unique meteorological events.
These experiments were organized as follows: a control group (CTRL) where no assimila-
tion was performed, a group where lightning data was assimilated (LIGHT), and a group
where lightning data assimilation was combined with an adaptive relative humidity (RH)
threshold (ALIGHT).

The meteorological events chosen for detailed analysis started at 00:00 UTC on 23 Jan-
uary 2018 and at 00:00 UTC on 19 May 2018. These dates were selected based on the specific
meteorological conditions and the distinct atmospheric synoptic scenarios associated with
each event. This selection aimed to assess the assimilation process’s effectiveness across
varying atmospheric conditions. An in-depth discussion of the meteorological scenarios
pertaining to each event will be presented in the subsequent section.

Each of the experiments consisted of eight short-term forecasts. Specifically, each
simulation generated a forecast spanning three hours, with successive forecasts initiated
every three hours, culminating in a total of 24 h of simulation for each experimental setup.

To mitigate the risk of numerical instabilities often associated with the insertion of
mass during the assimilation process, all simulations were initiated using a cold start
approach. Figure 3 illustrates the schematic structure of an experiment, depicting how
initial conditions are employed directly by the WRF-ARW model to produce a three-hour
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forecast for the CTRL experiment or used within the assimilation process for the LIGHT
and ALIGHT experiments.
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Figure 3. Diagram illustrating the schematic structure of an experiment. The assimilation process
was performed over a 30 min window around the analysis time (observations from 15 min before
and after the analysis time were considered). All cycles were cold started.

The experiments were scheduled to start at 00:00 UTC on the designated day and
conclude at 00:00 UTC the following day. This timing was crucial, as it allowed each simu-
lation’s initialization to align with varying quantities of lightning data available throughout
the day, enhancing the assessment of the assimilation methodology’s performance under
different conditions.

Moreover, for the experiment yielding the most favorable results, an extended 24 h
forecast was conducted to analyze the impact of the assimilation process more comprehen-
sively over a prolonged period. This extended analysis aimed to provide deeper insights
into the temporal effects of data assimilation on forecast accuracy and stability.

3.2. Assimilation Algorithm

In this research, the algorithm developed to integrate lightning data into the correction
of the initial model conditions was based on the framework established by Fierro et al. [16],
as outlined in Equation (1). This equation modifies the water vapor mixing ratio variable Qv
in the model by considering the flash rate density X derived from lightning observations.
It also involves the saturation mixing ratio Qsat and the graupel mixing ratio Qg, which
are calculated from the model’s initial conditions. The constants A, B, C, D, and α in the
equation are assigned values of 0.81, 0.2, 0.01, 0.25, and 0.22, respectively.

Qv = AQsat + BQsattanh(CX)
[
1 − tanh

(
DQα

g

)]
(1)

A 30 min window is established for calculating the flash rate, which involves accumu-
lating all lightning detections 15 min before and after the analysis time (the same 30 min
window was used to perform the 3DVAR assimilation process). Subsequently, Qsat is de-
rived from the Qv field present in the initial conditions, and Qg is also extracted from these
conditions. Utilizing Equation (1), a revised Qv is then computed. This recalculated Qv is
specifically determined in the mixed-phase region—defined by MacGorman and Rust [31]
as the atmospheric layer between the 0 ◦C and −20 ◦C isotherms where convection and
electrification intensify—and when the RH falls below 81% or 60% (further details in the
following section).

While Fierro et al. [16] incorporated corrections directly into the model by adjusting a
microphysics parameterization, the current study adopts a method akin to that of Wang
et al. [55]. Here, the assimilation is conducted using the WRFDA with the 3DVAR technique,
employing a proxy field (RH) generated from Qv as calculated by Equation (1). This process
allows the flash rate to adjust the Qv field, which is subsequently reinserted into the model
through the traditional assimilation process as if it were an observational data point.
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The concept of “simulated observation stations” is introduced, where, under the
specified conditions, RH is assimilated. These stations are not physical but rather represent
grid points within the domain where lightning data have been interpolated and the RH
assimilation conditions met. Figure 4 displays the increase in Qv (the difference between
analysis and background values) resulting from the assimilation at these stations.
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Figure 5. Flash rate density (102/km2) derived from lightning detection data and interpolated onto
the model’s grid, which has a 9 km horizontal resolution. This corresponds to the same period shown
in Figure 4.

It is observable that the assimilation algorithm invariably adds water vapor to the
atmosphere’s initial conditions. However, the number of these simulated observation
stations does not directly correlate with the amount of water vapor added, as illustrated by
comparing Figures 4 and 5 In regions with numerous stations, there is not necessarily a
greater increase in Qv. Notably, if a particular area was previously dry and then experiences
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a lightning event, the assimilation algorithm will induce a more significant increase in Qv
than in an area that was already saturated, as shown in Figures 4 and 5.

The lightning assimilation system (LAS) is structured around its main code, from
which all necessary modules and functions are executed in a specified order. Key operations
involve modules dedicated to reading and writing data. One module uses the NetCDF
library to read variables and grid dimensions from WRF NetCDF files, while another
handles the initialization and creation of files documenting flash rate density, water vapor
mixing ratios, and details about simulated observation stations.

The reading of lightning data and their interpolation to match the model’s resolution
are managed by specific functions within the system. Additionally, subroutines calculate
the water vapor mixing ratio, temperature, and relative humidity. Other functions calculate
spherical distances to map lightning detections to grid points, adjust the water vapor
mixing ratio variable using the established equation, and perform linear regression to
determine the relative humidity threshold. These processes are essential for refining the
model’s inputs and enhancing its accuracy.

Observational data from lightning detections are merged with the initial conditions
produced by the “REAL” component within the LAS code (Figure 6). Following this,
Qv is updated, leading to the creation of simulated observation stations, which are then
converted into the right format for the assimilation in WRFDA.
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Figure 6. Diagram illustrating the integration of the assimilation algorithm with the WRF model’s
structure [5,6]. It shows how the normal workflow of the model was modified to incorporate the
data assimilation process. Highlighted in blue are structures necessary for the assimilation, while the
assimilation algorithm developed in this study is highlighted in green.

3.3. Adaptative Threshold

This research implemented an adaptive threshold for RH rather than adhering to a
fixed threshold as previously established by Fierro et al. [16] and Wang et al. [55] at 81%.
It was observed that an adaptive approach enhances performance, particularly during
the dissipation phase of meteorological systems. When convection activity is waning
yet the system still generates lightning, inserting data at this stage can inappropriately
amplify convection in the model. To address this while also minimizing the model’s spin-up
time to accurately represent convection early in simulations, a balanced approach to the
introduction of water vapor is crucial.

The adaptive RH threshold is derived from the concept of the lightning jump, which
tracks the change in flash rate over time and is often utilized to signal severe weather
events [56,57]. In this study, the flash rate was monitored over 30 min intervals in the two
hours preceding the simulation’s start. By applying linear regression to these flash rates,
the optimal angle α that minimizes prediction errors was determined (Figure 7). An RH
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threshold of 81% is maintained if α exceeds 30◦; otherwise, the threshold is adjusted to 60%
(Equation (2)).

f (α) =
{

0.81, i f α > 30
◦

0.60, otherwise
(2)

These thresholds and angles were empirically set during the experimental testing
phase. The implementation of this adaptive threshold is anticipated to improve the model’s
performance even during the dissipation phases of meteorological systems.
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Figure 7. This graph displays the temporal variation in the number of lightning detections every
30 min for a specific case, represented by a blue line. The red line indicates the analysis time (18:00
on 19 May), while the black dots denote the data points used to compute the linear regression model.
The green line represents the best fit to these points, and α is the angle used to determine the RH
correction, as in Equation (2).

3.4. Performance Evaluation

The evaluation was focused on the precipitation variable. Initially, the Barnes algo-
rithm [58] was employed to interpolate observational data onto a grid corresponding to
the model’s configuration (refer to Section 3.1). Equation (3) outlines the interpolation ap-
proach, where xn

i represents the precipitation at the i-th grid point during the n-th iteration:

xn+1
i = xn

i +
∑K

k=1 wi,k
(
yk − xn

i
)

∑K
k=1 wi,k

(3)

where ∀i : x0
i = 0, yk denotes the k-th observation, and wi,k is the weighting function for

the k-th observation at the i-th grid point, defined in Equation (4).

wi,k = exp
[
−
(

di,k

gn

)α]
(4)

where di,k measures the distance in kilometers between the i-th grid point and the k-th
observation, α is a constant greater than 1, and gn is the decay parameter in the n-th
iteration, evolving as shown in Equation (5).

gn+1 = cgn (5)

with 0 < c < 1.
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The parameters were fine-tuned empirically by comparing them against the observa-
tional data, resulting in two iterations with α = 1.5, go = 80, and c = 0.5. The distances
were calculated using spherical trigonometry.

An illustration of this method is depicted in Figure 8, showing the observed data and
the interpolated precipitation field. After aligning the precipitation data with the model
grid, it became feasible to employ various techniques to analyze the observational data
against the simulation outcomes.
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The analysis tools included the threat scores (TS), false alarm ratio (FAR), and proba-
bility of detection (POD), defined by Equations (6)–(8), respectively:

TS =
hits

hits + misses + f alse alarms
(6)

FAR =
f alse alarms

hits + f alse alarms
(7)

POD =
hits

hits + misses
(8)

These metrics, defined in Table 2, outline performance with ideal scores of 1.0 for TS
and POD, and 0.0 for FAR. The contingency table also elucidates terms like “hits,” “false
alarms,” and “misses” based on model predictions and observed meteorological data. A
“hit” occurs when both the model forecasts and the observations confirm precipitation in a
specific area. A “false alarm” refers to the model predicting precipitation where none was
observed. Conversely, a “miss” is noted when precipitation occurs but was not forecasted
by the model.

Table 2. Contingency table.

Simulated/Observed Yes No

Yes Hits False alarms
No Misses Correct negatives
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Occasionally, the precipitation forecasted by the model may not align perfectly with
observations because the simulated fields are temporally delayed relative to the actual
events. Nonetheless, thresholds were defined to minimize this issue. The following
thresholds were established for the calculations in Equations (6)–(8):

• 30 km and 1 mm;
• 20 km and 5 mm;
• 20 km and 10 mm.

For example, the first criterion is met if a recorded or simulated precipitation amount
exceeds 1 mm within a 30 km radius of the designated grid point. If this condition is
fulfilled by both the model and the observations, it is classified as a hit. This method is
consistently applied across all grid points in the domain, aggregating all hits, false alarms,
and misses to compute the equations above.

Furthermore, a BIAS estimator was used to quantitatively assess the discrepancy be-
tween the experimental results and the observed precipitation, as specified in Equation (9):

BIAS =
1
N

N

∑
i
( fi − oi) (9)

Here, fi and oi represent the forecast and observation at the i-th grid point, respectively.
The methodologies outlined here, along with other standard techniques in meteorology for
comparing forecasts to observational data, are more thoroughly detailed in [59].

4. Results and Discussion

This section presents and discusses the outcomes of this study. It highlights the effects
of the lightning data assimilation system on WRF simulations across two separate case
studies, each characterized by unique meteorological conditions. Although the analysis
covers just two days, it is important to note that eight short-term simulations were con-
ducted for each day, providing a robust sample for evaluating the methodology employed
in this research.

4.1. Case Study I

The initial case study, which took place on 19 May 2018, featured the highest lightning
activity at 05:00 UTC (for the whole study area), with the most intense activity within
the inner domain, i.e., the evaluation area, occurring between 09:00 and 12:00 UTC. This
distribution of lightning strikes throughout the day is depicted in Figure 9. As outlined in
Section 2, lightning activity is closely linked to storm formation, suggesting that an uptick
in lightning is a marker of increased atmospheric instability. This instability often ties back
to various atmospheric dynamics, including thermodynamic processes.

Thermodynamically driven instability typically manifests towards the end of the day,
stemming from the intense solar heating of the Earth’s surface [60–62].

Additionally, mechanical processes can also instigate this upward movement of air lay-
ers. For example, the passage of a cold front can force atmospheric layers upwards [63,64].
During the early hours, when temperatures are at their lowest and atmospheric friction
decreases, cold fronts can move more rapidly. This increased movement pushes more
air layers and induces greater atmospheric instability, further promoting storm develop-
ment [65].

Figure 9 illustrates a surge in lightning activity in the early morning hours, suggesting
the onset of storm formation linked to a cold front. A subsequent increase in lightning
around 19:00 UTC corresponds to convection triggered by the daytime solar heating in an
already unstable atmosphere due to the cold front.

Figure 10 features synoptic charts from 00:00 UTC on 19 May 2018, verifying the
presence of a cold front in the study area. The synoptic conditions on this day led to
a significant increase in lightning activity, making it an exemplary day to employ the
assimilation technique. This approach helps with assessing the impact of integrating
lightning data on the accuracy of the simulations.
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Figure 10. (a) Synoptic chart at 00:00 UTC on 19 May 2018, depicting the surface synoptic environment
in South America. (b) Synoptic chart at 00:00 UTC showing the environment at 250 hPa [66].

Figure 10b displays an eastward-propagating wave at 250 hPa, inducing cyclonic
curvature in the subtropical jet over southern Brazil. The misalignment of the low-pressure
system at the surface (Figure 10a) indicates a baroclinic atmosphere, typical of a developing
system’s early stages [67].

This atmospheric configuration created a cold front that swept through the entire
simulation area, reaching its peak in lightning activity in the inner domain (the São Paulo
state region) at 11:30 UTC, as illustrated by the spatial distribution of lightning flashes in
Figure 11.

The satellite images (Figure 12) captured the intensification of thunderstorms early
in the day, aligning with the observed lightning activity in Figure 9. Although the system
began to dissipate overall after 05:00 UTC, there was visible intensification of smaller
storms along the southern border of São Paulo state, particularly near the coastline. These
smaller storms represent the initial stages of a squall line, which later generated significant
lightning activity and heavy rainfall throughout the state [68].
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Figure 12. GOES-16 satellite images from channel 7 (3.90 µ) displaying cloud-top temperatures (◦C)
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The lightning data assimilation technique developed by Fierro et al. [39] and later
adapted by Wang et al. [55], utilized in this study alongside a variant developed for this
research, primarily targeted moisture correction in the mid-levels of the troposphere. The
effects and distinctions between these two approaches are depicted in Figure 13.
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The assimilation algorithm specifically augments water vapor content, enhancing
atmospheric instability. It was noted that the algorithm increased moisture, particularly in
the oceanic regions near the coastline and in the northwest of São Paulo state, with slight
variations observed between the two experiments. This increase in water vapor, denoted as
a high Qv increment, is typically associated with either numerous lightning detections or
initially low relative humidity in areas exhibiting lightning activity.

This process is instrumental in refining short-term weather forecasts by initiating deep
convection and generating corresponding cold pools, as detailed in previous studies by
Fierro et al. [16] and Mansell et al. [37]. The smoothness observed in the Qv increment field
seen in Figure 13 results from the data assimilation system assimilating “simulated observa-
tions.” This pattern likely emerges from recursive filters applied to two-dimensional fields
of increment control variables during the background error covariance matrix computation
process [70].

To assess the differences between the two experiments and quantify the added mois-
ture in various parts of the simulation domain, the total amount of water vapor added to
the atmosphere for each simulation cycle was calculated and is shown in Figure 14.
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As mentioned in the methodology section, adjustments to the relative humidity thresh-
old occur during the dissipating phase of the meteorological systems, leading to variations
not being consistently apparent across all simulation cycles. It was observed that in certain
cycles, the ALIGHT algorithm introduced more water vapor. Despite correcting fewer grid
points, the ALIGHT experiment injected a greater amount of moisture due to unmodified
coefficients in Equation (1).

The experiments conducted on 19 May 2018, which utilized lightning data to en-
hance the initial conditions of the model, demonstrated notable improvements in the early
hours of the simulation compared to the control (CTRL) experiments. Specifically, the
LIGHT/ALIGHT experiments showed enhanced rainfall representation and more accurate
system positioning. Significant enhancements were particularly evident when observation
stations recorded intense rainfall. It is known that the WRF model tends to underesti-
mate rainfall volumes in scenarios with extreme precipitation, especially during the initial
hours [71]. Thus, incorporating moisture early in the simulations through Equation (1)
helped foster atmospheric instabilities, reducing the model’s spin-up time and yielding
quicker simulation responses.
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Efforts to shorten the WRF model’s typical spin-up time of 6 to 12 h have been explored
in other studies, aiming for faster responses and improved initial hours of simulation [72–74].
Reducing spin-up time also significantly cuts down on computational resource usage.

Similar findings have been reported in other studies that employed lightning data as-
similation techniques for initializing meteorological models, where enhancements in the rep-
resentation of meteorological fields in the early simulation hours were observed [16,41,55].

When comparing the LIGHT and ALIGHT experiments, a slight improvement was
noted in the latter, especially in representing the precipitation field, although these differ-
ences were only noticeable during periods with reduced lightning detections.

Figure 15 displays the cumulative precipitation field for the CTRL, LIGHT, and
ALIGHT experiments, along with the observed precipitation for each simulation cycle. The
experiments incorporating lightning data generally performed better, particularly in cycles
with higher precipitation volumes (cycles iv and v), with the most notable performance in
the ALIGHT experiment during cycle iv.
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Even in the initial cycles (i and ii), where precipitation was minimal, the lightning data
assimilation experiments outperformed CTRL. However, in the final cycles (vii and viii),
both the LIGHT and ALIGHT experiments overestimated the observed precipitation in
the domain.

This overestimation likely resulted from the simulated meteorological environment
rather than the number of lightning detections by itself. During cycles i and ii, which
featured 1273 and 2805 lightning detections, respectively, precipitation volumes increased
sharply due to the approaching cold front, and the assimilation experiments responded well
to the introduction of lightning data. Conversely, cycles vii and viii were conducted in an
environment where convection was primarily thermally induced, leading to lesser rainfall
despite a high incidence of lightning, a phenomenon further explored in the subsequent
case study.

Large-scale systems like cold fronts typically yield higher precipitation volumes [75].
However, analyses of lightning databases indicate that significant lightning activity can oc-
cur in both large-scale and local convective systems during the southeast Brazilian summer.

The Fierro et al. [16] lightning data assimilation algorithm, developed through the
analysis of numerous meteorological events across the United States, is optimized for mid-
latitude environments where large-scale systems prevail. Consequently, Equation (1) is
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expected to yield better results when applied to large-scale systems rather than tropical
regions, where precipitation is often driven by local convection due to daytime heating.

Figure 16 shows the BIAS for the 3 h accumulated precipitation. The assimilation
algorithm generally exhibited better performance during periods with higher precipitation
(cycles iii, iv, v, and vi), whereas in the last cycles (vii and viii), the CTRL experiment per-
formed better. Notably, in cycle iv, the correction implemented in the ALIGHT experiment,
initially developed in this research, showed superior performance compared to both the
LIGHT and CTRL experiments. Overall, the ALIGHT experiments consistently provided
the best representation of precipitation volume in the domain, followed by the LIGHT
experiments, as illustrated in Figure 16.
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In essence, the assimilation of lightning data effectively enhanced the precipitation
field representation across almost all simulation cycles, particularly during the passage of
the cold front.

In the ALIGHT experiment, more water vapor was added during cycles iv and v (as
shown in Figure 14) compared to the LIGHT experiment, thereby accelerating the model’s
response and fostering more convection and precipitation in the initial hours.

Figure 17 spatially illustrates the impact of the data assimilation procedures by dis-
playing the accumulated precipitation for every hour of simulation in cycle iv. The CTRL
experiment struggled to accurately reproduce the precipitation field, only generating some
precipitation after one hour of simulation. The precipitation field was misaligned with the
meteorological system, which moved faster than the model could simulate. Fast-moving
systems, such as squall lines, were particularly challenging to simulate accurately in the
initial hours.

Both the LIGHT and ALIGHT experiments began producing precipitation from the
outset, evolving into intense precipitation in subsequent hours. Although these experiments
depicted the squall line as moving slower than observed, the quantity of rain they simulated
was more closely aligned with actual observations than that of the CTRL experiment.
Notably, by 12:00 UTC (three hours into the simulation), the ALIGHT experiment was the
only one capable of reproducing precipitation cores with more intense rainfall (above 11
mm/h), which was closer to the observed values (Figure 17). In all experiments during
cycle iv, the precipitation band associated with the squall line consistently preceded what
the model could produce.
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Figure 17. Precipitation accumulation in the inner domain for cycle iv (09:00 UTC on 19 May
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(g–i) LIGHT experiment; (j–l) ALIGHT experiment. Shown at 10:00 (1 h), 11:00 (2 h), and 12:00 (3 h).

Ahasan and Debsarma [76], analyzing a squall line that affected a region in India, also
employed assimilation techniques in the WRF model to simulate this extreme event more
accurately. They observed that, despite some spatial and temporal biases in representing
the squall line, the WRF model could appropriately simulate the synoptic environment
with improvements noted in experiments utilizing data assimilation.

Similar timing and positioning biases were noted by Su et al. [77] while simulating a
squall line event in eastern China using the WRF model. They highlighted the significant
role of cold pools in the development and evolution of such systems, emphasizing the
importance of accurately representing these features to properly simulate the squall line.
Correct depiction of these atmospheric elements can enhance short-term forecasting by
inducing deep convection [37].

Fierro et al. [16] also observed that accurately representing cold pools at the analysis
time could enhance forecasts, particularly when the mesoscale environment was not well
simulated by the model.

Despite the same timing and positioning errors observed in other studies, the in-
corporation of lightning data in the assimilation process yielded positive outcomes. The
introduction of water vapor at the analysis time spurred deep convection in the initial hours
of simulation, a phenomenon rarely achieved by the model without any data assimilation.

To quantify the improvements in system positioning due to the lightning data assimi-
lation methodology, POD, FAR, and TS were calculated for various precipitation thresholds
(refer to Section 3.4). These calculations were applied across all cycles, as shown in Table 3.
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Table 3. The probability of detection (POD), false alarm ratio (FAR), and threat score (TS) calculated
from the three-hour accumulated precipitation in each cycle for all three experiments (CTRL, LIGHT,
and ALIGHT) across different thresholds (30 km and 1 mm, 20 km and 5 mm, 20 km and 10 mm).
Null values indicate an inability to calculate due to lack of precipitation. Null means that the the
specific metric was not calculated due to insufficient information.

Experiment Simulation
Cycle

30 km and 1 mm 20 km and 5 mm 20 km and 10 mm

POD FAR TS POD FAR TS POD FAR TS

CTRL

i 0.00 Null 0.00 0.00 Null 0.00 0.00 Null 0.00
ii 0.00 Null 0.00 0.00 Null 0.00 0.00 Null 0.00
iii 0.26 0.00 0.26 0.20 0.00 0.20 0.17 0.16 0.16
iv 0.30 0.00 0.30 0.06 0.42 0.06 0.00 Null 0.00
v 0.06 0.68 0.06 0.00 Null 0.00 0.00 Null 0.00
vi 0.10 0.00 0.10 0.08 0.00 0.08 0.03 0.68 0.03
vii 0.00 1.00 0.00 0.00 1.00 0.00 0.00 Null 0.00
viii 0.17 0.94 0.04 Null Null Null Null Null Null

Mean 0.11 0.44 0.09 0.05 0.36 0.05 0.02 0.42 0.02

LIGHT

i 0.49 0.89 0.10 0.22 0.91 0.07 0.00 1.00 0.00
ii 0.49 0.60 0.28 0.14 0.70 0.11 0.00 1.00 0.00
iii 0.64 0.38 0.46 0.37 0.10 0.36 0.18 0.22 0.17
iv 0.57 0.22 0.49 0.45 0.26 0.39 0.06 0.79 0.05
v 0.55 0.45 0.38 0.21 0.76 0.13 0.07 0.94 0.04
vi 0.44 0.74 0.20 0.22 0.17 0.21 0.03 0.44 0.03
vii 0.46 0.93 0.06 0.00 1.00 0.00 0.00 1.00 0.00
viii 0.65 0.91 0.09 Null 1.00 0.00 Null 1.00 0.00

Mean 0.54 0.64 0.26 0.23 0.61 0.16 0.05 0.80 0.04

ALIGHT

i 0.49 0.89 0.10 0.22 0.91 0.07 0.00 1.00 0.00
ii 0.49 0.60 0.28 0.14 0.70 0.11 0.00 1.00 0.00
iii 0.64 0.38 0.46 0.37 0.10 0.36 0.18 0.22 0.17
iv 0.57 0.22 0.50 0.48 0.27 0.41 0.13 0.86 0.07
v 0.56 0.45 0.38 0.20 0.78 0.12 0.01 0.99 0.01
vi 0.44 0.75 0.19 0.22 0.16 0.21 0.03 0.72 0.03
vii 0.46 0.93 0.06 0.00 1.00 0.00 0.00 1.00 0.00
viii 0.65 0.91 0.09 Null 1.00 0.00 Null 1.00 0.00

Mean 0.54 0.64 0.26 0.23 0.62 0.15 0.05 0.85 0.04

The initial threshold (30 km and 1 mm) evaluates the model’s ability to reproduce
precipitation. Notably, in both experiments utilizing lightning data assimilation (LIGHT
and ALIGHT), POD improved significantly, while the increase in FAR was comparatively
smaller, enhancing the POD/FAR ratio. However, to accurately determine the extent of
improvement in precipitation positioning due to the use of lightning data, it is essential to
analyze more events, as the FAR could not always be calculated in the CTRL experiments.

This pattern persisted across other thresholds, with the lightning data assimilation
experiments enhancing both POD and TS metrics, whereas FAR increased only marginally.
No significant differences were observed between the LIGHT and ALIGHT experiments.

To assess how lightning data assimilation impacts medium-range forecasts, a 24 h
forecast was initiated based on the promising results from cycle iv. This simulation was
initiated at 09:00 UTC on 19 May 2018 and concluded at 09:00 UTC on 20 May 2018. The
precipitation rate during this period is depicted in Figure 18.

The precipitation rates in the LIGHT and ALIGHT experiments displayed superior
outcomes in the initial hours, and these experiments continued to more accurately represent
the meteorological environment even after this period. Conversely, the CTRL experiment
struggled to match the observed precipitation rate, exhibiting a delayed response, partic-
ularly in the first half of the simulation. The corresponding BIAS for this 24 h period is
shown in Figure 18b.
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Figure 18. Simulated and observed precipitation rates from 09:00 UTC on 19 May 2018 to 08:00 UTC
on 20 May 2018 (a), and the calculated BIAS for the precipitation rate (b).

An analysis of the precipitation rate BIAS indicates that the lightning data assimilation
experiments more accurately reproduced rainfall amounts in the initial hours compared to
the CTRL experiment. However, the apparent improvement in BIAS observed between
4 and 7 h of simulation in the CTRL experiment may not signify a genuine enhancement. As
discussed previously, this could simply be a delayed response from the initial conditions,
which later aligned with the observed data, contributing to the minimal BIAS noted
(Figure 18b).

Fierro et al. [44] also reported enhanced performance in the accumulated precipita-
tion forecast during the initial hours of simulation for high-impact weather events after
analyzing 67 cases.

Wang et al. [55] described the algorithm developed by Fierro et al. [16] as an effective
assimilation method for initiating convection where lightning data were recorded. However,
it has limitations in suppressing spurious convection or modulating convection levels.

Indeed, the lightning data assimilation algorithm contributed to generating spurious
convection in the simulations, which was identified as one of the sources of error in these
experiments, restricting the forecast range where lightning data were beneficial during
the analysis time. This spurious convection may have resulted from instabilities caused
by the insertion of mass at the analysis time. Adding mass can lead to initial mass/wind
imbalances and the subsequent generation of inertia–gravity waves during the model
integration process [78]. Employing digital filters is one method proposed to mitigate these
imbalances [79,80].

Although spurious convection occurred, the experiments incorporating lightning data
demonstrated enhanced performance in short-term forecasts, with the ALIGHT experiment
yielding the most favorable outcomes.

Moreover, these data assimilation experiments more accurately captured the location
of precipitation compared to the CTRL experiment. As depicted in Figure 19, both POD and
TS showed improvements during the first 4 h of the simulation, while the FAR was lower
than that observed in the CTRL experiment at the detection threshold of 30 km and 1 mm.
No substantial differences were noted between the LIGHT and ALIGHT experiments.

Wang et al. [55] also noted improved outcomes for accumulated precipitation within
the initial 6 h of simulation when using the detection threshold for the frequency skill score
in their experiment with lightning data assimilation. This suggests that the experiment
utilizing lightning data was more effective in identifying regions with precipitation.

It is important to note that across all 24 h experiments (CTRL, LIGHT, and ALIGHT),
the results tended to converge after approximately 17 h of simulation, indicating that the
impact of lightning data assimilation may diminish in medium- and long-range forecasts.

Implementing data assimilation cycles at the start of the simulation, known as dynamic
initialization or warm start, could potentially enhance medium-range forecasting. However,
caution is advised since dynamic initialization through nudging can produce unbalanced
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fields in the initial conditions, leading to both errors in the simulations and potential
numerical instabilities [8].
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The analysis of the case from 19 May 2018 indicates that employing the lightning
data assimilation system enhanced the depiction of precipitation fields and the accuracy
of the meteorological system’s location, particularly in the initial hours of the simulation
(short-term forecast). Furthermore, it can be concluded that the algorithm adapted in
this study, based on the original framework by Fierro et al. [16], demonstrated superior
performance overall in comparison to other experiments conducted.

4.2. Case Study II

The second scenario examined occurred on 24 January 2018, featuring a markedly
different atmospheric environment. This instance saw convective activity driven largely
by thermal forcing, leading to numerous local convective systems unrelated to broader
scale atmospheric dynamics. These localized systems, although driven by regional physical
processes, resulted in a significant increase in lightning activity within the study area
compared to the earlier case, as illustrated in Figure 20.

The peak in lightning detections occurred at 21:00 UTC, i.e., in the study area (19:00
UTC in the inner domain, i.e., in the evaluation area), a timing typical for thermally induced
storms. Observations indicated that all storms within the region were triggered by similar
mechanisms, as the green and blue lines in Figure 20 exhibit corresponding patterns.
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Figure 20. Lightning detections every 30 min within the inner and outer domains on 24 January 2018.
Outer domain refers to the simulation domain while the inner domain refers to the evaluation area.

Further examination of the synoptic charts reveals a distinct atmospheric setup com-
pared to the previous case (Figure 21). At the 250 hPa level, the Bolivian High was notably
displaced from its climatological position, impacting the central and northern parts of
the continent (Figure 21b). The Bolivian High, a high-altitude high-pressure atmospheric
system, is influenced by several factors, including the Andes mountains and the Bolivian
Altiplano, which force easterly winds to increase, creating divergent airflow and, conse-
quently, a high-pressure area at higher altitudes. Additionally, intense convection in the
Amazon rainforest releases substantial heat at lower levels, further bolstering the high-
pressure system aloft. This displacement of the Bolivian High can occasionally occur due
to atmospheric flows.
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Figure 21. (a) Synoptic chart at 00:00 UTC on 24 January 2018, depicting the surface synoptic environ-
ment in South America. (b) Synoptic chart at 00:00 UTC showing the environment at 250 hPa [66].

Another significant large-scale system, the Upper Tropospheric Cyclonic Vortex (UTCV)
over Northeast Brazil, is also visible [81]. The Bolivian High influences the formation of
the UTCV. The UTCV, a low-pressure system, typically produces rainfall southwest of its
center due to convergent airflow drawing moisture from the ocean.
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This atmospheric configuration acts as an atmospheric blocking, preventing cold fronts
from the south from reaching the Brazilian southeast and promoting convection driven by
thermodynamics in the region [64,82].

Figure 22 depicts the maximum activity of flash density in the inner domain, showing
numerous individual storms producing lightning mostly uniformly across the entire do-
main, a common occurrence when daytime heating is the primary driver of atmospheric
instability and storm formation.
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highlighted in Figure 1b.

The satellite images in Figure 23 illustrate the convection affecting the entire domain
but with greater intensity in the states of Rio Grande do Sul and Santa Catarina. Figure 23a
shows the meteorological system in its dissipation phase, having been initiated by the
previous daytime heating, while Figure 23c shows that the energy from the current daytime
heating began generating clouds and storms.
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Figure 23. GOES-16 satellite images from channel 7 (3.90 µ) displaying cloud-top temperatures (◦C)
at 00:00 (a), 09:00 (b), and 18:00 (c) UTC on 24 January 2018 [69].

In contrast to the earlier case, the differences here are pronounced. In this instance,
convection was primarily driven by local thermodynamics resulting from intense daytime
heating, which led to a higher frequency of lightning detections, predominantly observed
towards the end of the day. Consequently, the system exhibited relatively stationary
behavior, characterized by localized and concentrated rainfall.

Figure 24 illustrates the impact of the lightning data assimilation algorithm on the
experiment conducted on 24 January 2018, specifically showing the increase in water vapor
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content (Qv increment) at 19:00 UTC. During the periods of lightning activity (as shown
in Figure 20), the algorithm, as anticipated, introduced more water vapor into the initial
conditions compared to the earlier case.
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Figure 24. Comparison of Qv increments in g/kg (analysis minus CTRL), vertically integrated, from
the ALIGHT (a) and LIGHT (b) experiments at 09:00 UTC on 24 January 2018. The green square
represents the same area highlighted in Figure 1b.

In the initial case during cycle iv (09:00 UTC on 19 May 2018), the algorithm accounted
for 3265 lightning detections (Figure 9), leading to an addition of approximately 70 g of
water vapor within the domain (Figure 14). Conversely, in cycle vi of the second case
(18:00 UTC on 24 January 2018), there were 11975 lightning detections (Figure 20), resulting
in the addition of about 100 g of water vapor (Figure 24).

This augmented water vapor content heightened atmospheric instability, triggering
convective motions and, consequently, increased precipitation during the early hours of
the simulation, as depicted in Figure 25.
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Figure 25. Total water vapor Qv added by the assimilation algorithm in the inner and outer domains,
detailed for each simulation cycle on 24 January 2018.

The experiments conducted on 24 January 2018, which utilized lightning data to
enhance model initialization, did not yield the same level of improvement as those ob-
served in the previous case. Generally, both the LIGHT and ALIGHT experiments tended
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to overestimate the amount of precipitation in the study area, though they did achieve
better accuracy in representing the position of the meteorological system compared to the
CTRL experiment.

Contrasting with the first event studied, the lightning activity on 24 January 2018
predominantly resulted from daytime heating, peaking at 21:00 UTC, as shown in Figure 20.
This pattern indicates that the lightning was primarily triggered by local convective systems,
with minimal influence from larger-scale atmospheric conditions. Similar to the first case,
the introduction of additional water vapor helped to foster atmospheric instabilities and
subsequent convection early in the simulation. However, the experiments did not accurately
capture the volume of rainfall produced by the multitude of local convection systems.

These local systems exhibited more intense lightning activity compared to the previous
event. While the 19 May 2018 case recorded a higher total rainfall with a peak of around
6000 lightning detections, the 24 January 2018 event, despite having less rainfall, logged
over 16,000 detections (Figures 9 and 20). These discrepancies between the number of
lightning detections and the volume of rainfall affected the performance of the lightning
data assimilation algorithm used in this study.

This analysis revealed that the thermal forcing on this particular day led to minimal
precipitation alongside high lightning activity, which may have prompted the assimilation
algorithm to add excessive water vapor, causing the LIGHT and ALIGHT experiments to
overestimate accumulated precipitation.

Figure 26 illustrates the total precipitation field accumulated across the entire simu-
lation domain for the CTRL, LIGHT, and ALIGHT experiments, alongside the observed
precipitation for each of the 3 h simulation cycles.
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simulation cycle on 24 January 2018, broken down by experiment.

The overestimated precipitation volumes in the experiments could stem from an inad-
equate representation of graupel at the onset. Despite the capability to resolve convection
explicitly, the experiments failed to accurately simulate graupel, possibly due to the 9 km
resolution used in the simulations. Graupel plays a crucial role in thunderstorm develop-
ment, particularly in local convective systems typical of the area during summer, which are
characterized by deep convection producing strong updrafts and high concentrations of
graupel, a key factor in lightning formation [83–85].

Further, Tao et al. [86] noted that large ice particles can suppress storm updrafts,
influencing the dissipation rate of the system and consequently the precipitation output.
Adams-Selin et al. [87] found that simulations allowing for large graupel formation resulted
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in a minimal stratiform precipitation area with reduced convective intensity, whereas
smaller graupel facilitated deeper and stronger cold pools, leading to extensive stratiform
precipitation and persistent convection.

These findings align with observations from this study. The typical graupel formation
within local convective systems provided the necessary conditions for frequent lightning
and rapid system dissipation, consistent with the high number of lightning detections and
minimal rainfall observed (Figure 26). This also elucidates why the precipitation field was
overestimated by the data assimilation experiments; the inability of the model to simulate
appropriate graupel concentrations led to an excessive addition of water vapor. Higher
concentrations of graupel typically lead to less water vapor being added to the atmosphere.

Figure 26 demonstrates that the experiments employing data assimilation considerably
overestimated the three-hour accumulated precipitation in most cycles. However, it is
important to note that the first hour of accumulated precipitation simulated by the LIGHT
and ALIGHT experiments showed improved performance.

Figure 27 displays the BIAS for the three-hour accumulated precipitation, where the
best performance of the assimilation algorithm was seen in cycles ii, iii, and iv, with the
CTRL experiment generally outperforming the others.
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Once again, the algorithm struggled to accurately simulate the precipitation amounts
associated with thermal forcing, as evidenced by the poorer performance in the later
simulation cycles of both analyzed cases (19 May and 24 January), likely due to inadequate
representation of graupel mixing ratios.

In this scenario, a slight difference was observed between the ALIGHT and LIGHT
experiments, attributable to the lower precipitation volumes. Despite poorer representa-
tion of the three-hour accumulated precipitation, the rapid response in the first hour of
simulation suggested a beneficial impact of the assimilation.

To spatially analyze the impact of the data assimilation procedures, Figure 28 presents
the accumulated precipitation for every hour of the cycle ii simulation. Although the CTRL
experiment demonstrated a smaller error than other experiments, it failed to accurately
reproduce the precipitation field, producing some precipitation only after the first hour of
simulation. Additionally, the primary precipitation core centered around 22.5◦ S and 50.7◦

W was not accurately simulated by any of the experiments.
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Figure 28. Precipitation accumulation in the inner domain for cycle iv (09:00 UTC on 24 January
2018), broken down by time and experiment: (a–c) observed precipitation; (d–f) CTRL experiment;
(g–i) LIGHT experiment; (j–l) ALIGHT experiment. Shown at 10:00 (1 h), 11:00 (2 h), and 12:00 (3 h).

Generally, the assimilation algorithm overestimated the precipitation field, primarily
associated with daytime heating. The inherent tendencies of the WRF model might also
contribute to these errors, as suggested by Davis et al. [88], who, using an object-based
verification methodology, found that the WRF model tends to overestimate rain area sizes
during the daytime, which can lead to an overall overestimation of the precipitation field.

Although the CTRL experiment did not produce significant precipitation in the ini-
tial hours of simulation, the use of assimilation techniques reduced the spin-up period,
preempting the model’s natural tendency to overestimate precipitation.

Like the previous case, the variables POD, FAR, and TS were calculated for various
precipitation thresholds (refer to Section 3.4) to quantitatively assess the positioning error
of the simulated precipitation field. These calculations were applied across all cycles, as
shown in Table 4.

Across all thresholds, the probability of detection and threat score improved slightly,
with a minor increase in false alarms for the data assimilation experiments. However,
null values were also noted, affecting the precise quantification of these metrics but not
detracting from the overall conclusions drawn.

The ALIGHT experiment outperformed the LIGHT experiment in terms of precipita-
tion detection, showing higher POD and TS values and fewer false alarms. When compared
with the CTRL experiment, the ALIGHT experiment significantly improved the probability
of detection with only a slight increase in the false alarm rate.

Across other thresholds, the experiments incorporating lightning data assimilation
consistently outperformed the CTRL experiments, enhancing the accuracy of precipitation
field positioning within the domain.
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Table 4. The probability of detection (POD), false alarm ratio (FAR), and threat score (TS) calculated
from the three-hour accumulated precipitation in each cycle for all three experiments (CTRL, LIGHT,
and ALIGHT) across different thresholds (30 km and 1 mm, 20 km and 5 mm, 20 km and 10 mm).
Null values indicate an inability to calculate due to lack of precipitation. Null means that the specific
metric was not calculated due to insufficient information.

Experiment Simulation
Cycle

30 km and 1 mm 20 km and 5 mm 20 km and 10 mm

POD FAR TS POD FAR TS POD FAR TS

CTRL

i 0.24 0.67 0.16 0.05 0.82 0.04 0.03 0.97 0.02
ii 0.00 Null 0.00 Null 1.00 Null Null Null Null
iii 0.00 Null 0.00 Null Null Null Null Null Null
iv Null Null Null Null Null Null Null Null Null
v Null 1.00 0.00 Null Null Null Null Null Null
vi 0.34 0.81 0.14 Null 1.00 0.00 Null 1.00 0.00
vii 0.40 0.82 0.14 0.19 0.98 0.02 Null 1.00 0.00
viii 0.16 0.53 0.14 0.09 0.66 0.08 0.07 0.90 0.04

Mean 0.19 0.77 0.08 0.11 0.86 0.03 0.05 0.97 0.01

LIGHT

i 0.44 0.77 0.18 0.29 0.88 0.09 0.27 0.96 0.04
ii 0.28 0.82 0.12 0.10 0.92 0.05 Null Null Null
iii 0.00 1.00 0.00 Null Null Null Null Null Null
iv Null 1.00 0.00 Null Null Null Null Null Null
v Null 1.00 0.00 Null Null Null Null Null Null
vi 0.47 0.96 0.04 Null Null Null Null 1.00 0.00
vii 0.47 0.87 0.11 0.36 0.98 0.02 Null 1.00 0.00
viii 0.49 0.71 0.22 0.30 0.88 0.10 0.35 0.94 0.06

Mean 0.36 0.89 0.08 0.26 0.91 0.06 0.31 0.97 0.02

ALIGHT

i 0.51 0.77 0.19 0.33 0.87 0.10 0.27 0.96 0.04
ii 0.37 0.79 0.15 0.11 0.92 0.05 Null Null Null
iii 0.00 1.00 0.00 Null Null Null Null Null Null
iv Null Null Null Null Null Null Null Null Null
v Null 1.00 0.00 Null Null Null Null Null Null
vi 0.47 0.96 0.04 Null Null Null Null 1.00 0.00
vii 0.47 0.87 0.11 0.36 0.98 0.02 Null 1.00 0.00
viii 0.49 0.71 0.22 0.30 0.88 0.10 0.35 0.94 0.06

Mean 0.39 0.87 0.10 0.27 0.91 0.06 0.31 0.97 0.02

Based on the results thus far, a 24 h simulation starting at 00:00 UTC on 25 January
2018 was conducted. This cycle was selected to assess differences between the LIGHT and
ALIGHT experiments during both the dissipation phase of the system and a period marked
by significant precipitation and lightning activity.

During the first three hours of simulation, the precipitation rates generated by the
LIGHT and ALIGHT experiments showed improvements, while the CTRL experiment
exhibited a slower response. However, all experiments converged to a similar outcome
after approximately 8 h. In the latter part of the simulation (beyond 16 h), the CTRL
experiment responded better, producing more precipitation and aligning more closely with
the observed data compared to the LIGHT and ALIGHT experiments.

The BIAS for the precipitation rate indicated that the precipitation fields in the data
assimilation experiments did not closely match the observations, as shown in Figure 29.

Despite the local miscalculations in BIAS by the LIGHT and ALIGHT experiments,
the metrics of POD, TS, and FAR reflected an overall improvement in the representation of
the precipitation field throughout the simulation period, particularly in the initial hours, as
illustrated in Figure 30.

In the first four hours of simulation, both POD and TS saw significant enhancements
without an increase in false alarms compared to the CTRL experiment. Notably, the
ALIGHT experiment demonstrated the best performance during this period, with increases
in POD and TS and a reduction in FAR.
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The findings from the case study on 24 January 2018 revealed that the integration of
the lightning data assimilation system enhanced the timing and positioning of convection
activity and the precipitation field during the initial hours of the simulation (3 h). Nonethe-
less, the rainfall amounts were overestimated, partially due to the surplus water vapor
introduced during the analysis phase. Consequently, adjustments are still necessary for
the lightning data assimilation algorithm applied during the warm season in southeastern
Brazil, as demonstrated in this study.

5. Conclusions

This study evaluated the integration of lightning data into the WRF model using the
WRFDA system with the 3DVAR method. It marked the first application of a lightning
data assimilation technique using data from BrasilDAT to enhance short-term weather
forecasting in South America.
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A key contribution of this research was the development and adjustment of an assimi-
lation algorithm for application in Brazil, including a modification to the relative humidity
threshold within the original algorithm. This adjustment played a crucial role in refining
the lightning data assimilation process for this region, particularly during the dissipation
phase of weather systems.

The results of the experiments indicate that the lightning data assimilation system
generally enhanced the accuracy of short-term precipitation forecasts for large-scale sys-
tems, particularly with the applied humidity threshold correction. Moreover, the algorithm
successfully refined the timing and placement of a squall line, likely due to an accurate
depiction of cold pools during the assimilation phase.

However, the study also noted limitations. For example, in scenarios where convection
was driven by thermal forcing, the assimilation of lightning data had an adverse effect
on the forecast. These convective systems, characterized by deep convection with high
lightning activity but less precipitation, presented challenges. The model struggled to
accurately simulate ice concentrations, leading the assimilation algorithm to introduce
excessive moisture and overestimate precipitation. The horizontal resolution used in this
study may also have influenced these outcomes, suggesting an area for future investigation.

The type of convective system significantly impacted the performance of the experi-
ments. While the study improved the accuracy in positioning some meteorological systems,
it struggled with precipitation fields generated by thermal forcing.

The introduction of lightning data as an alternative source for data assimilation repre-
sents a significant advancement, potentially enhancing short-term forecasts across various
sectors. Lightning data offer high temporal and spatial resolution, providing detailed
insights into storm characteristics. Furthermore, the infrastructure for lightning detection
is relatively simple to deploy and maintain compared to other observational technologies
like satellites and radars.

As lightning data assimilation in meteorological models is a relatively new research
area, this study opens numerous avenues for further investigation. It specifically addressed
the impact of such systems in South America and proposed a necessary algorithmic cor-
rection. The findings revealed that the performance of the assimilation algorithm could
be influenced by the model’s inability to replicate graupel concentration, highlighting a
critical area for improvement.

Future research directions could include:

1. Evaluating the assimilation algorithm’s performance in different seasonal and geo-
graphical contexts, particularly in mid-latitude regions during winter, where large-
scale systems are predominant.

2. Adjusting assimilation algorithm coefficients, potentially using machine learning to
optimize settings and enhance performance across various atmospheric conditions.

3. Exploring alternative parameterizations and/or spatial resolutions to improve model
representation of graupel, which could in turn refine the assimilation process.

4. Implementing multiple assimilation cycles to enhance initial model conditions while
also incorporating filters to mitigate numerical instabilities from added mass.

5. Comparing different assimilation approaches, such as 4DVAR, Kalman filtering, and
hybrid methods, to further optimize the data assimilation framework.

This study’s findings and recommendations pave the way for enhancing the accuracy
and reliability of weather forecasting models through the use of lightning data, underscor-
ing the need for continued research and development in this field.
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