U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Species distribution models for deep-water coral habitats that account for spatial uncertainty in trap-camera fishery data



Details

  • Journal Title:
    Marine Ecology Progress Series
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Bottom-contact fisheries present risks to vulnerable marine ecosystems (VMEs) such as deep-water coral and sponge communities. Managing these risks requires better knowledge about VME spatial distribution within fishing areas. In this paper, we develop predictive species distribution models for alcyonacean (Order Alcyonacea) corals at SGaan Kinghlas-Bowie Seamount (SK-B) in British Columbia, Canada, based on direct presence/absence observations obtained from deep-water cameras attached to commercial fishing gear. We obtained in situ presence/absence observations of deep-water corals (Order Alcyonacea, Order Antipatharia, Order Pennatulacea, Family Stylasteridae) and sponges (Class Hexactinellida, Class Demospongiae) at 124 locations during commercial fishing trips at the SK-B marine protected area. We developed species distribution models for alcyonacean corals at SK-B and compared the performance of models using 4 different estimators of trap landing position (surface drop position and 3 Bayesian estimators) to account for spatial uncertainty in observation locations. We found that the different estimators for landing position affected variable selection, model performance, and model predictions. The best-fitting models using the 4 different landing position estimators had mean AUC values ranging from 0.71 to 0.78 and maximum kappa values ranging from 0.36 to 0.47. This study demonstrates how collaborative research surveys with commercial fisheries can provide fine-scale spatial data for coral and sponge habitat mapping using an approach that is scalable for benthic habitat risk assessment for large, possibly remote, areas where fisheries operate.
  • Source:
    Marine Ecology Progress Series, 660, 69-93
  • DOI:
  • ISSN:
    0171-8630 ; 1616-1599
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:9256d5bd672c0d3cb06717272569f49257df2b1585f2f7beabfc89af0270849932ad02885bf469568f5a604aec0d80d71c9e84b4d8356a50edb595e71c5bbe89
  • Download URL:
  • File Type:
    Filetype[PDF - 2.36 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.