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1.  INTRODUCTION

Demersal fisheries targeting fish or invertebrate
species living on or near the seafloor can damage sen-
sitive benthic habitats formed by deep-water corals
and sponges. These vulnerable marine ecosystems
(VMEs) may be slow to recover from fishing impacts

(Sainsbury et al. 1997, Williams et al. 2010) be cause
they are composed of slow-growing, long-lived ani-
mals that occur in isolated populations with limited
larval dispersal and sporadic recruitment (Andrews et
al. 2002, 2009, Mercier & Hamel 2011, Waller et al.
2014). Although fisheries are increasingly scrutinized
for potential impacts on VMEs, fishing damage to
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coral and sponge habitats is rarely quantified (see ex-
amples in Dichmont et al. 2008, Welsford et al. 2014,
Pitcher et al. 2015, 2017, Barnett et al. 2017), in large
part due to limited information on their location.

Species distribution models (SDMs) aim to predict
the location of VMEs and improve information for
fisheries management and marine-use planning.
SDMs use a statistical model (e.g. logistic regression,
generalized additive model [GAM], random forest,
boosted regression) to estimate relationships between
environmental covariates and the probability of spe-
cies occurrence. A fitted SDM can produce maps
showing the probability of species occurrence (e.g.
coral or sponge habitat) or densities over large areas
where species observations are not available (Guisan
& Zimmermann 2000, Woodby et al. 2009, Rooper et
al. 2014). SDMs for coral habitats model relationships
 be  tween coral presence/absence or abundance and
en vironmental predictor variables such as depth,
 cur rents, temperature, fishing pressure, and bottom-
substrate features (e.g. bottom type, rugosity, slope)
that are often associated with high or low densities of
deep-water corals (Woodby et al. 2009, Rooper et al.
2014, Wilborn et al. 2018). Estimating functional rela-
tionships for SDMs and predicting species distribu-
tion requires 3 types of information: (1) observations
of presence-only, presence/absence, or abundance
indices for indicator taxa; (2) environmental covari-
ates (e.g. bottom type, depth, slope, temperature, cur-
rents) associated with each observation, and (3) envi-
ronmental covariates at locations where predictions
of presence/absence need to be made. The quality,
quantity, spatial resolution, and observation type
(e.g. presence-only, presence/ absence, abundance)
of these 3 kinds of information can affect the accuracy
of SDMs and their usefulness for managing fishing
risks on VMEs (Araújo & Guisan 2006, Anderson et al.
2016, Rowden et al. 2017, Winship et al. 2020).

The majority of SDMs for deep-water coral and
sponge habitats use presence-only data from sources
such as museum records, research expeditions, or
fisheries bycatch, where reliable absence information
is often unavailable (Vierod et al. 2014, Winship et al.
2020). Most presence-only SDMs (e.g. maximum en-
tropy or environmental niche factor analysis) are lim-
ited to estimating a relative probability of species
presence (being unbounded) with no way to estimate
the proportionality to absolute probability without
baseline prevalence data (Phillips & Elith 2013). Fur-
thermore, extending to models bounded between 0
and 1 (e.g. logistic models) does not solve the issue,
as the likelihood functions are identical for models
whose species prevalence differs by a multiplicative

constant, rendering them indistinguishable without
some baseline prevalence data (Phillips et al. 2004,
Hastie & Fithian 2013, Phillips & Elith 2013, Fithian et
al. 2015). While relative probabilities may be adequate
for some decision-making, such as ranking areas of
habitat suitability for conservation planning, absolute
probabilities are often preferred (Winship et al. 2020).
For example, the expected proportion of coral and
sponge habitats overlapping with fishing grounds can
be estimated from absolute probabilities, while rela-
tive probabilities can only identify areas that are more
likely to overlap with coral and sponge habitats rela-
tive to other areas. Another limitation with presence-
only methods is that they frequently suffer from large
sampling bias, whereby models may incorrectly pre-
dict higher probabilities of occurrence for sites that
are more frequently sampled in comparison to sites
with low sampling effort (Fithian et al. 2015). For
 example, fisheries bycatch data may exclude more
complex terrain or other unfished areas that are well
suited for coral and sponge habitats. This type of bias
is problematic for managing fisheries, as it can pro-
duce higher probabilities of coral habitat in the areas
most fished (i.e. with higher sampling effort), leading
to suboptimal management strategies that perceive
greater conservation benefits from closing valuable
fishing grounds than might actually be achieved.
While presence-only models have useful applications,
such as identifying potential VME sites for further in-
vestigation, determining potential suitable habitat dis -
tributions, informing survey design, spatial planning,
and evaluating trade-offs between fisheries and con-
servation objectives (Davies & Guinotte 2011, Lagasse
et al. 2015, Chu et al. 2019, Kinlan et al. 2020), they
are less ideal for managing fishing risks to bottom
habitat (Winship et al. 2020). Modelling approaches
using presence/ absence data are preferred because
they typically have better predictive performance
(e.g. less bias and greater accuracy) and provide
measures of absolute probability that are easily inter-
preted (Phillips et al. 2009, Hastie & Fithian 2013,
Guillera-Arroita et al. 2014, Fithian et al. 2015, Ander-
son et al. 2016, Winship et al. 2020).

For many deep-water habitats, observations of co -
rals and sponges are most commonly available via by-
catch in commercial fishing or fishery- independent
surveys using bottom-contact fishing gear (Gass &
Willison 2005, Watling & Auster 2005, Finney &
Boutillier 2010, Rooper et al. 2014, Sigler et al. 2015).
Although bycatch data provides observations over
large spatial extents where fisheries operate, and are
relatively inexpensive to collect, such observations
have inherent limitations for species distribution mod-
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elling. Bycatch data limits SDM choices to  presence-
only methods using simulated absence data from the
study site (i.e. pseudo-absences, Phillips et al. 2009,
Iturbide et al. 2015) or requires inferring absences
from fishing events with unobserved bycatch. Lack of
bycatch observations may not imply absence of corals
or sponges within an area due to selectivity of the
gear that can vary with size and morphology of the
species. For example, taller species with more com-
plex branching are more likely to be entangled with
fishing gear or retained in trawl mesh, compared with
smaller specimens or those that easily break apart
(Auster et al. 2011, Rooper et al. 2011, Ewing et al.
2014). While the inference of absence from fishing
events with zero bycatch may be a reasonable as-
sumption for some taxa or taxonomic groups, it can
underestimate prevalence of taxa with low selectivity
in fishing gear.

The spatial accuracy of the bottom location from
which deep-water coral and sponge observations
originate may range from metres to several kilome-
tres for different data types. For many observations,
spatial accuracy is low, limiting the spatial resolution
for SDMs and habitat mapping (Finney 2009, Fithian
et al. 2015). For example, a coral bycatch observation
taken at the surface (i.e. a physical specimen or part
thereof) may have arisen from a coral colony any-
where along a trawl tow track spanning several kilo-
metres. A common assumption applied to SDMs using
bycatch trawl data is that the observation oc curred at
the midpoint of the tow, but the effects of this as -
sumption on model performance are not typically
evaluated. The environmental predictor information
used to fit SDMs is commonly extracted from terrain
attributes derived from bathymetry and back scatter
multibeam data (e.g. depth, rugosity, slope, bathy-
metric position index [BPI], substrate), oceanogra -
phic datasets (e.g. primary production, temperature),
and oceanographic models (e.g. tides, current, tem-
perature, salinity, substrate), rather than measured in
situ (Brown et al. 2011, Rengstorf et al. 2012). The
spatial scales of the environmental data are highly
variable, ranging from 0.1 to 10 km or greater for
oceanographic and modelled datasets, to 1−100 m for
terrain information derived from high-resolution
multibeam acoustic data (for a detailed review of the
environmental data available for SDMs, see: Brown et
al. 2011, Winship et al. 2020). If environmental pre -
dictor data varies over finer spatial scales than the
uncertainty associated with the observation location,
then the predictor data used to fit the model will be
inaccurate and can lead to poorer model perform-
ance (Graham et al. 2008, Naimi et al. 2011, Fithian

et al. 2015). In this case, the spatial uncertainty in ob -
servations are compounded be cause SDMs will in -
clude both the spatial uncertainty in the presence/
absence observations (i.e. re sponse variable) and
spatial uncertainty in extracted environmental data
(i.e. predictor variables) used to fit the model. While
crude estimates of observation bottom locations can
be acceptable for regional-scale modelling, they are
likely too coarse for informing spatial fishery man-
agement on relatively fine spatial scales.

Management of fishing impacts on VMEs could be
improved via spatial modelling and mapping aimed
at delineating fine-scale boundaries for coral or
sponge habitats (Rengstorf et al. 2012, Rowden et al.
2017). Such mapping would require relatively high-
resolution observations, environmental data, and
models, because coral and sponge habitats often oc -
cur in isolated small patches (Heifetz 2002), even in
areas with optimal environmental features (e.g. depth
and rocky substrate; Mortensen & Buhl-Mortensen
2004). For example, recent fishing closures designed
to protect small glass sponge reefs (Class Hexactinel-
lida) in Georgia Strait and Howe Sound, British
Columbia (BC), have a median area of 1.1 km2, with
individual closures ranging from 0.6 to 7.6 km2 in
size. These sponge reefs have been mapped using
re motely operated vehicles (ROVs), drop-cameras,
SCUBA diving, and multibeam back scatter (Conway
et al. 2005, Chu & Leys 2010, Clayton & Dennison
2017, Dunham et al. 2018), rather than SDMs, but
they demonstrate how spatial management strate-
gies can target specific areas of conservation concern
more effectively when fine-scale resolution (e.g. 10−
100 m) information on bottom habitats is available.
While SDMs typically generate probability maps
with coarser spatial resolution than multibeam data,
fine-scale resolution SDMs are increasingly possible
due to improved observational data, high-resolution
multibeam bathymetry, and new modelling ap -
proaches (Do lan et al. 2008, Guinan et al. 2009,
Woodby et al. 2009, Neves et al. 2014, Rooper et al.
2016). In some cases, oceanographic data at coarser
resolutions can be interpolated to finer scales (Rooper
et al. 2014, 2017, Georgian et al. 2019) to match the
scale of SDMs needed to inform management, or
SDMs may be developed using primarily high-reso-
lution seafloor terrain co variates (Do lan et al. 2008,
Woodby et al. 2009, Georgian et al. 2014, Rowden et
al. 2017). The level of spatial resolution needed for
ef fective management will de pend on objectives and
other factors, such as the patchiness of coral or sponge
habitats, the distribution of fishing ef fort, and the
ability to manage at finer spatial scales. Crude map-
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ping of these habitats from coarse-resolution SDMs
can lead to poorly designed boundaries for protect-
ing VMEs and spatial closures that are misplaced or
include large buffer zones, where a large proportion
of the area contains none of the habitats in need of
protection (Anderson et al. 2016, Rowden et al. 2017).
Misplaced spatial closures or management decisions
arising from imprecise SDMs may be counterproduc-
tive to both conservation and socioeconomic fishery
objectives by shifting fishing effort into other VMEs
that are undiscovered and un protected, and/or creat-
ing unnecessary economic losses for fisheries (Pen-
ney & Guinotte 2013, Lagasse et al. 2015).

Ideally, SDMs would be estimated via presence/
absence or abundance observations as might be
 collected from submersibles, ROVs, tow-cameras, or
drop-cameras (Williams et al. 2014, Rooper et al.
2016, Rowden et al. 2017, Doherty et al. 2018)
where the camera location is known with greater
precision. These types of in situ video observations
of bottom habitats are expensive to collect and are
typically only available for specific areas of interest
where de dicated research surveys have been con-
ducted. By catch data is often the only data available
for coral and sponge distributions in fishing areas,
which limits model choices for SDMs and their use-
fulness for effective management of fishing risks on
VMEs. For many fishing areas and potential VMEs,
particularly for high relief areas without regular
trawl surveys or trawl fisheries, bycatch data is
sparse or unavailable. This is the case for the Cana-
dian sablefish fishery that operates along the conti-
nental slope and, to a lesser extent, at offshore sea -
mounts in BC at depths of 200−1350 m using
longline hook and trap gear (see Fig. 1). To address
the lack of information on potential coral and
sponge habitats within sablefish fishing areas, we
developed a deep-water camera system that can be
deployed on sablefish fishing traps during regular
fishing operations and the annual stratified random
survey (Doherty et al. 2018). These camera systems
provide an approach that is scalable and has the
potential to be widely implemented across fisheries.
They allow collection of the presence/ absence and
abundance observations needed for ef fective moni-
toring, mapping, and risk assessment of coral and
sponge habitats within fishing footprints. If these
kinds of camera systems were widely implemented
during regular fishing operations, they could collect
habitat data just as frequently as bycatch, but with-
out the main limitations (e.g. presence-only ob -
servations and spatial un certainty), and at a much
cheaper cost than other alternatives for collecting in

situ bottom observations (e.g. ROVs, tow-cameras,
submersibles). In the present paper, we describe the
development of predictive SDMs for corals at the
SGaan Kinghlas−Bowie Sea mount (SK-B) off the
coast of BC (see Fig. 1), based on direct presence/
absence observations ob tained from the deep-water
cameras attached to commercial trap fishing gear
(i.e. ‘trap-cameras’). The camera system was de -
ployed opportunistically during regular fishing trips
to SK-B as well as on targeted deployments accord-
ing to equal stratified random (ESR) and completely
random sampling strategies designed to develop,
im prove, and validate SDMs (Hirzel & Guisan
2002). Spatial uncertainty is taken into account for
both presence/ absence observations and environ-
mental covariates used in model fitting via alterna-
tive Bayesian estimators of the camera position on
the seafloor (Doherty et al. 2018).

2.  MATERIALS AND METHODS

2.1.  Study site

SK-B is the southernmost seamount in the Kodiak-
Bowie Seamount Chain (also called the Pratt-Welker
Chain) that runs 1000 km northwest from SK-B Sea-
mount up to Kodiak Seamount, encompassing 14
major and several smaller seamounts (Turner et al.
1980, Chaytor et al. 2007). SK-B Seamount has an
oblong shape oriented in the southwest−northeast di -
rection, with a linear ridge extending approximately
20 km northeast from its northern end (Fig. 1). The
slopes of SK-B Seamount extend from a base depth of
approximately 2800 m up to a flat summit area of
26 km2 at depths ranging from 200 m to 250 m (Chay-
tor et al. 2007). Several pinnacles arise from an ele-
vated area near the centre of the summit, with the
tallest pinnacle reaching 24 m depth (Halcro 2000).
The average slopes on the seamount are between 10°
and 20°; however, slopes on the southwest and north-
east flanks are more variable, ranging from 0° to 50°,
likely created by solidified lava flows (Chaytor et al.
2007). In 2008, a marine protected area (MPA) was de -
signated around SK-B and 2 seamounts to the north
(the Hodgkins and Davidson seamounts), with new
zoning for fishing (Government of Canada 2008).
Between 2008 and 2017, the sablefish (Anop lo poma
fimbria) fishery by longline trap was the only fishing
permitted within the SK-B Seamount MPA and was
restricted to fishing in Zone 2 on SK-B at depths
below the approximate 457 m contour (DFO 2015)
(Fig. 1).
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2.2.  Sampling design

Camera systems were mounted to fishing traps
during select fishing trips to SK-B from 2013 to 2017
and were programmed to record 1 min video clips at
regular 2 h intervals while the trap was stationary on
the bottom. Camera video recordings were also trig-

gered by an internal accelerometer during gear
movement on retrieval, for impact forces greater than
0.6 g units. The trap-camera systems were deployed
alongside depth−temperature sensors (Seabird SBE
39) and accelerometers (ActiGraph wGT3X-BT) in
single traps on commercial bottom longline sets with
40− 60 total traps. No more than 1 camera was de -
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ployed per longline set, and set lengths ranged from
1.8 to 4.0 km, with a median of 2.9 km. All epifauna
ob served in camera videos were identified to the
lowest taxonomic rank possible, which was often the
Order or Family level due to limited visibility and
lack of physical samples to confirm genus or species
(refer to Doherty & Cox 2017 and Doherty et al. 2018
for details on species identification and images).

For the 2013−2015 sampling trips, we deployed a
camera on 92 commercial fishing sets at SK-B. Fishing
at SK-B has historically occurred on all sides of the
seamount at depths of 250−1350 m (Canessa et al.
2003), and deployment during regular fishing sets
was expected to provide relatively uniform sampling
of SK-B. During the 2013−2015 sampling period, cam-
eras were deployed as time permitted during re gular
fishing operations on the middle trap on the set to re-
duce the risk of losing cameras from lost traps. As fish-
ing sets are generally deployed perpendicular to con-
tour lines (shallow to deep or vice versa), de ploying
cameras on the middle traps led to a greater propor-
tion of observations in the 800− 1150 m depth range.

Initial SDMs fit to data collected during the 2013−
2015 fishing trips identified depth, rugosity, slope,
and maximum tidal speed as important predictor
variables for coral habitats (Doherty 2016). In 2016,
we implemented a sampling strategy to im prove and
validate model performance. The strategy involved:
(1) ESR sampling locations for model training (Hirzel
& Guisan 2002), (2) completely random sampling lo -
cations for model testing, and (3) routine commercial
fishing sets where the locations were selected by the
skipper. ESR sampling locations were designed to
provide new training data in areas with combinations
of predictor variables poorly represented by the
2013−  2015 sampling. The sampling space for ESR
and random sites included all areas at SK-B Sea -
mount within the 500−1450 m depth range divided
into 200 m × 200 m grid cells, including un fished
areas such as the Northeast ridge. Depths shallower
than 500 m were excluded from the sampling space
to avoid sample locations too close to the fishing
 closure, which approximately follows the 250 fathom
(457 m) contour. We stratified by 4 environmental
variables (depth, maximum tidal current, rugosity,
and slope), and each variable was divided into 3
strata to ensure the full range of values was sampled
(Table 1). Each variable/ stratum combination was
used to generate distinct strata layers for sampling.
Theoretically, this would produce 34 (81) distinct
strata; however, several variable/ stratum combina-
tions do not exist at SK-B or occur in a small number
of grid cells. Strata with <18 grid cells were aggre-

gated into a ‘combination’ stratum for sampling, lead-
ing to a total of 19 distinct strata (Table 2). Some
strata were sampled frequently in 2013−2015, while
others had limited sampling or no sampling coverage.
We proposed 21 new ESR sampling locations with the
goal of obtaining at least 3 samples within each stra-
tum for model fitting. ESR sites were randomly se-
lected from the available grid cells within each stra-
tum. An additional 24 sites were selected at random
from the sampling space to be used as test data for
 assessing model performance. The random sample
locations also provided unbiased estimates of coral
prevalence within the 500−1450 m depth range at SK-
B Seamount (i.e. the sampling space) that were used
to assess candidate probability thresholds for as signing
presence/absence from model outputs (Free man &
Moisen 2008a, Phillips & Elith 2013). Finally, the sam-
pling protocol during routine commercial fishing sets
(e.g. sets that were not deployed in ESR or random
sites) alternated the camera position among shallow,
middle, and deep ends of the set to obtain observations
across all depth strata, but was otherwise unchanged.
There were 32 cameras de ployed in 2016 that success-
fully captured bottom footage: 11 at ESR sites, 14 at
random sites, and 7 during regular fishing operations.

2.3.  Trap location estimates

For each trap-camera observation, we used a Baye -
sian camera location estimator to produce a posterior
grid of probabilities for the trap-camera landing posi-
tion on the seafloor (Doherty et al. 2018). We used
surface deployment coordinates as the centre point
of an uncorrelated bivariate normal prior distribution
for the bottom location of each trap-camera. The pos-
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Variable                                             Levels         Range

Rugosity (ACR)                                   Low           1.0−1.1
                                                         Medium        1.1−1.2
                                                            High           1.2−1.31

Slope (°)                                               Low              1−21
                                                         Medium         21−40
                                                            High            40−60

Maximum tidal current (cm s−1)        Low              5−17
                                                         Medium         17−28
                                                            High            28−43

Depth (m)                                         Shallow       340−800
                                                         Medium       800−1150
                                                            Deep       1150−1505

Table 1. Environmental variables and levels used for strati-
fication. ACR: arc:chord ratio
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terior distribution was proportional to the product of
this prior with a likelihood function computed at each
grid point given the depth sensor observation from
the camera and a 10 m multibeam bathymetry raster
(refer to Table 3 in Doherty et al. 2018 for statistical
model). Posterior grid cells are re-normalized by
assigning zero probability to grid cells with probabil-
ity <0.01% that occur in areas of vanishingly small
density (Doherty et al. 2018).

The 2016 surface deployment coordinates for
 camera drops were recorded at sea, while 2013−2015
surface deployment coordinates u(i) = (x~(i),y~(i)) were
estimated by taking a weighted average of the de -
ployment track start and end locations, where:

(1)

(2)

where N (i) is the total number of traps on the set and
n(i) is the position of the trap with the mounted cam-
era-system (and depth sensor) along a straight line
between the start and end positions for each set i.

The Bayesian trap location estimator was used to
account for uncertainty in the trap landing position
when extracting environmental raster data for SDM
parameterization. We fit 4 models using different sets

of environmental data obtained from (1) the drop
location (i.e. the centre point of the prior distribu-
tion), (2) the posterior mode grid cell location, (3) the
posterior medoid grid cell location, and (4) a poste-
rior-weighted average of grid cells (Fig. 2). The pos-
terior mode uses a point estimate from the posterior
grid cell with the highest posterior probability. The
posterior medoid is the grid cell with non-zero prob-
ability that is closest to the cell with median x (i.e.
Easting) and median y (i.e. Northing) coordinates
from posterior grid cells with non-zero probabilities.
Finally, the posterior probability grid was used to
estimate a weighted average of the environmental
predictor data from multiple grid cells, rather than
using a single grid cell as a point estimate.

2.4.  Response variable

Deep-water corals are commonly modelled at
higher taxonomic levels that pool observations of
families in the Alcyonacea order (e.g. Acanthogorgi-
idae, Paragorgiidae, Isididae, Plexauridae, Primno -
idae), as there is often insufficient taxonomic resolu-
tion in datasets to produce models at the family,
genus, or species level (Woodby et al. 2009, Rooper et
al. 2014, 2017). This was the case for our dataset at
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Stratum #              Habitat variables and levels in strata                 Available            Proposed Camera observations
                      Rugosity         Slope           Tidal           Depth       200 m × 200 m       2016−2017       2013−2015      2013−2016
                                                                current                              sample sites       ESR sampling

1                        Low          Medium         Low           Shallow               108                         2                        1                      7
2                        Low              Low         Medium       Shallow               161                         1                        2                      8
3                        Low          Medium      Medium       Shallow               559                         0                        7                     12
4                        Low              Low            High          Shallow                22                          2                        1                      3
5                        Low          Medium         High          Shallow               136                         1                        2                      3
6                        Low              Low             Low          Medium               282                         0                       12                    14
7                        Low          Medium         Low          Medium               803                         0                       32                    36
8                     Medium       Medium         Low          Medium                30                          0                        7                      9
9                     Medium          High            Low          Medium                20                          3                        0                      1
10                      Low              Low         Medium       Medium               113                         0                        5                      6
11                      Low          Medium      Medium       Medium               231                         0                        9                      9
12                   Medium       Medium      Medium       Medium                19                          0                        3                      4
13                      Low              Low             Low             Deep                 545                         0                        3                      3
14                      Low          Medium         Low             Deep                1110                        0                        5                      5
15                   Medium       Medium         Low             Deep                  66                          2                        1                      1
16                      Low             High            Low             Deep                  30                          3                        0                      0
17                   Medium          High            Low             Deep                  38                          3                        0                      0
18                      High             High            Low             Deep                  18                          3                        0                      0
19               Combination                                                                         67                          1                        2                      3
                       stratum
Total                                                                                                                                      21                      92                   124

Table 2. Total trap-camera observations from 2013−2016 and proposed 2016−2017 equal stratified random (ESR) sampling sites
for different habitat strata. The combination stratum includes combinations of stratification levels that occur in <18 sample sites 

(200 m × 200 m grid cells)
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SK-B, and we grouped all coral observations of the
Alcy ona cea order together for the response variable
in SDMs. The Alcyonacea order includes the major-
ity of corals observed at SK-B, and different species
are often observed in the same sampling location,
indicating many alcyonacean coral species occupy
similar habitats at SK-B (Doherty & Cox 2017, Gale et
al. 2017). SK-B Alcyonacea observations included the
families Primnoidae, Isididae, Plexauridae, Para gor -
gi idae, and Alcyoniidae, most of which are associ-
ated with taxa providing habitat structure (Krieger &
Wing 2002, Etnoyer 2008). The exception to this is
the Alcyoniidae family, with the genera Antho mastus
and Heteropolypus, that are smaller in size, and com-
monly referred to as soft corals since they do not have
rigid skeletons (Wing & Barnard 2004, Molodtsova
2013). The other 4 families are known as gorgonians
due to their previous inclusion in the Gorganacea
order before it was subsumed into the Alcyonacea
order. We included Alcyoniidae in the response vari-
able grouping, since H. ritteri is commonly observed
with gorgonians at SK-B and was considered a good
indicator species for the other families. Tow-camera
transects at SK-B from 2015 (Gale et al. 2017)
observed H. ritteri on 7 transects along with taxa
from at least one of the families Isididae (6 transects),
Plexauridae (6 transects), Primnoidae (5 transects), or
Paragorgiidae (4 transects). Similarly, all but one of
our drop-camera observations of H. ritteri also had
the presence of other alcyonacean coral families.

2.5.  Predictor variables

We considered 6 predictor variables for species dis-
tribution modelling based on data derived from
multibeam bathymetry, an ocean tidal model, and
historical fishing information (Table 3). All predictor
variables were converted to 100 m × 100 m grid cell
raster maps that encompassed the fishable area at
SK-B Seamount (Fig. 1c). We used a Universal Trans-
verse Mercator projection (Zone 8) for all raster lay-
ers, with a spatial extent of 41 km × 30 km (longi -
tudinal range: 135.9° to 135.3° W, latitudinal range:
53.2° to 53.4° N) that includes 14 896 grid cells (each
100 m × 100 m) for species distribution modelling.
The grid cells for modelling were selected to encom-
pass the primary depths (250−1350 m) where sable-
fish fishing occurs, excluding areas in the existing
fishing closure (Fig. 1c). Since the fishing closure at
the top of the seamount follows roughly the 250
fathom (457 m) contour, the majority (99.5%) of the
grid cells modelled are for depths between 400 and
1350 m.

SK-B Seamount seafloor bathymetry data from the
Canadian Hydrographic Services (Halcro 2000) were
obtained for a 10 m × 10 m grid and were aggregated
to a 100 m × 100 m raster using the arithmetic mean
of cell values via the ‘raster’ package in R software
version 3.5.0 (Hijmans 2017, R Core Team 2018). In
addition to depth, we used bathymetric derivatives —
BPI, rugosity, and slope — as predictor variables, be -
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cause these are typically used to identify areas with
hard substrate or suitable coral habitat (Masuda &
Stone 2015). Bathymetry derivatives were also calcu-
lated as rasters using 10 m × 10 m grid cells and then
aggregated to 100 m × 100 m raster layers using the
arithmetic mean of cell values. The BPI is a second-
order derivative of bathymetry used to indicate
changes in elevation associated with depressions,
slopes, ridges, or mounds. A positive BPI indicates an
area of higher elevation relative to the surrounding
landscape (e.g. mounds, seamounts, knolls, ridges),
whereas a negative BPI indicates an area of lower
elevation relative to the surrounding landscape (e.g.
depressions, valleys, troughs). The benthic terrain
modeller extension (Wright et al. 2012) in ArcGIS
was used to calculate a broad-scale BPI (inner radius
of 15 m and outer radius of 30 m) raster layer. Rugos-
ity was calculated as the contoured surface area di -
vided by the area of a plane of best fit (i.e. arc:chord
ratio [ACR] rugosity index) following the methodo -
logy in Du Preez (2015) using ArcGIS. The contoured
surface area and slope (4-cell method, Fleming &
Hoffer 1979) were calculated using the DEM surface
tools extension (version 2.1, Jenness 2013) to ArcGIS.

Tidal speeds were obtained from the Oregon State
University Tidal Inversion Software (OTIS) package
(TPXO8-atlas solution, www.tpxo.net/otis) using a
100 m resolution forward solution (Egbert & Erofeeva
2002) that was parameterized using 100 m × 100 m
bathymetry for SK-B Seamount and the surrounding
area that in cludes the Hodg kins and Davidson
seamounts to the north (175 km × 219 km area, longi-
tudinal range: 137.5° to 134.1° W, latitudinal range:
52.6° to 54.1° N). Tidal speeds were generated for 1 h

intervals over 368 consecutive days to produce a tidal
current time series for spring and neap tides over a
complete lunar year at SK-B (Pond & Pickard 1983,
Rooper et al. 2014). Maximum tidal speeds from each
grid cell during the time series were used to generate
the maximum tidal speed raster.

Finally, we calculated cumulative fishing intensity
from the sablefish longline trap fishery at SK-B (Fish-
eries and Oceans Canada [DFO] groundfish database
archived at the Pacific Biological Station in Nana  imo,
BC) to reflect potential long-term impacts of fishing on
the probability of coral presence. We assumed that
traps were equally spaced in a straight line between
the terminal deployment locations of sets (based on
the reported surface position of the vessel) and calcu-
lated the cumulative number of traps deployed in
each 100 m × 100 m grid cell from 1991 to 2014. Note
that adjustments for trap bottom locations could not
be made for historical trap de ploy ments because reg-
ular fishing gear does not collect the depth sensor data
needed to apply the Bayesian trap location estimator.

All predictor variable rasters were used for both
model parameterization and model prediction, with
the exception of depth, which was measured directly
during camera deployments. Where available, we
used the median of depth sensor measurements from
the period that the trap was stationary on the seafloor
as the observed depth when estimating model coeffi-
cients for depth. When depth sensor data were not
available, we used depth data from the internal trap-
camera depth sensors, and when no depth sensor
data were available (3 deployments), depths were
obtained from extracted bathy metry values at the
surface deployment location.
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Predictor variable                     Description                                                     Source/method

Bathymetry and derivatives
Depth (m)                                  10 m resolution seafloor bathymetry collected using               Halcro (2000)
                                                  multibeam sonar

Bathymetric position index     Second-order derivative of bathymetry that indicates             Wright et al. (2012)
(BPI)                                         depressions, flats, ridges, and mounds

Rugosity                                    Ratio of contoured surface area to the area of a plane of        Du Preez (2015)
                                                  best fit (e.g. arc:chord ratio rugosity index)

Slope (%)                                   Absolute value of vector sum of east−west and north−south  Fleming & Hoffer (1979), 
                                                  gradient computed using 4 neighbouring cell method             Zevenbergen & Thorne (1987)

Other variables
Maximum tidal speed              Maximum predicted tidal speeds from tidal inversion             Egbert & Erofeeva (2002)

(cm s−1)                                    software model outputs over 368 d

Cumulative fishing intensity   Cumulative number of fishing traps deployed in                     Derived from DFO Pacific Reg-
(traps per 10 000 m2)               100 m × 100 m grid cells between 1991 and 2014                     ion groundfish catch database

Table 3. Predictor variables used for species distribution modelling at SGaan Kinghlas−Bowie Seamount
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2.6.  Model fitting and evaluation

We fit a GAM using a binomial distribution with a
logit link function for predicting the probability πi of
coral presence in each of the i = 1,…I 100 m × 100 m
grid cells, i.e.:

(3)

where α is the intercept term and sj are thin plate
regression spline smoothing functions (Wood 2006)
for xj predictor variables with j = 1,…, p (Table 3). We
fit GAMs with presence/absence observations of
alcyonacean corals (n = 124) using an all-subsets
selection procedure involving all possible combina-
tions of the p = 6 predictor variables. The mgcv pack-
age in R (Wood 2006) was used for GAM model fit-
ting and the MuMIn package in R (Bartón 2019) was
used for all-subsets model selection. To avoid overfit-
ting, we weighted effective degrees of freedom by
γ = 1.4 in the unbiased risk estimator (UBRE) used to
estimate smoothing parameters (Kim & Gu 2004,
Wood 2006), and limited degrees of freedom for the
smoothing functions (k ≤ 3 for the trap predictor and
k ≤ 4 for all other predictors, Wilborn et al. 2018). The
trap predictor variable was restricted to k ≤ 3 to avoid
overfitting, as it was very sensitive to a single outlier
presence observation at the maximum observed
range of trap densities.

We used the Akaike information criteria corrected
for small sample size (AICc, Hurvich & Tsai 1989,
Burn ham & Anderson 2002) to identify the model
with the lowest AICc and additional candidate mod-
els that were within 2 AICc units. Models that in -
clude additional predictor variables and are within 2
AICc units of the top model are not supported if the
maximized log-likelihood is essentially the same as
that of the top model (Burnham & Anderson 2002).
Therefore, when multiple models had AICc scores
within 2 units of the lowest AICc, we selected the
simplest model with the fewest predictor variables.

The data extraction process resulted in 4 datasets
of presence/absence observations and environmen-
tal covariates associated with each observation based
on the different estimators for the trap-camera posi-
tion on the seafloor (drop location, posterior mode,
posterior medoid, and posterior weighted grid cells).
The GAM models and selection procedure were ap -
plied separately to each of the 4 datasets. After
model selection, the environmental predictor raster
layers were then used to generate predictive maps
for the mean probabilities of alcyonacean coral
presence at each 100 m × 100 m grid cell in the

modelled area. We computed 95% confidence inter-
vals for each grid cell as the mean prediction ±
1.96 SE.

We explored threshold-independent (area under
the receiver operating characteristic curve [AUC],
proportion of deviance explained) and threshold-
dependent (kappa, percent correctly classified [PCC],
specificity, sensitivity, true skill statistic [TSS]) meas-
ures for evaluating model performance (Fielding &
Bell 1997, Allouche et al. 2006, Freeman & Moisen
2008a). Threshold-dependent metrics require a prob-
ability classification threshold to convert model prob-
abilities into categorical values for presence or ab-
sence, while threshold-independent metrics do not.
For example, if a threshold of 0.5 is selected for pres-
ence, then model probabilities ≥0.5 would be consid-
ered a predicted presence location and any prob -
ability <0.5 would be considered an absence location.
Threshold-dependent measures assess binary model
classification accuracy and are derived from confusion
matrices, which summarize the number of true posi-
tives (sensitivity: model correctly predicted presence
where observed presences occur), false positives
(model incorrectly predicted presence where ob-
served absences occur), true negatives (specificity:
model correctly predicted absence where observed
absences occur), and false negatives (model incor-
rectly predicted absence where ob served presences
occur). While threshold-dependent metrics have use-
ful applications for evaluating SDMs, such as weight-
ing error types differently ac cording to modelling ob-
jectives (Fielding & Bell 1997, Lobo et al. 2008),
threshold-independent metrics are often preferred
since they do not require the selection of a specific
classification threshold.

We used 3 primary metrics to evaluate model per-
formance:

(1) AUC
(2) the proportion of deviance explained (%)
(3) the maximum kappa (κ) statistic
The AUC is a measure of total area under the

receiver operating curve and is a threshold-indepen-
dent measure of model accuracy since it is calculated
across the entire range of possible probability thresh-
olds for classification (0−1). The AUC estimates the
probability that the model’s predicted probability for
a randomly selected presence observation will be
greater than that for a randomly selected absence
observation using ranked data (DeLong et al. 1988).
General guidelines for interpreting AUC values
range from poor or only marginally better than
chance (0.50− 0.69), acceptable (0.70−0.79), excellent
(0.80− 0.89), and outstanding (≥0.90) discrimination
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(Hosmer & Lemeshow 2005). AUC is one of the most
widely used metrics for evaluating SDM perform-
ance; however, one of its limitations is that it does not
evaluate model goodness of fit (see Lobo et al. 2008 for
other limitations on AUC). We use the proportion of
null deviance explained by the model (i.e. 1 − model
deviance/ null deviance) as a measure of goodness of
fit. The third metric used was the kappa statistic
(Cohen 1960, Fielding & Bell 1997), which measures
the improvement in the proportion of correctly pre-
dicted presence/ absence locations over chance
expectations (Manel et al. 2001). Landis & Koch
(1977) suggest benchmark values of kappa that indi-
cate slight (0.00−0.20), fair (0.21− 0.40), moderate
(0.41− 0.60), substantial (0.61−0.80), or near-perfect
(0.81− 1.00) agreement between model predictions
and observations. For each model, we calculated the
maximum kappa statistic obtainable by varying prob-
ability thresholds between 0 and 1.

As a secondary evaluation of model performance,
we assessed model binary classification accuracy
over varying probability thresholds for predicting
presence and absence using the PresenceAbsence
package (Freeman & Moisen 2008b) implemented in
R (R Core Team 2018). We identified optimal thresh-
olds for kappa, sensitivity, specificity, PCC, TSS, and
the threshold where model-predicted prevalence
equals the observed prevalence of coral presence ob -
servations. The observed prevalence used was calcu-
lated from the random sampling locations.

We completed a 5-fold cross-validation for each
model, where each fold uses 80% of the observa-
tions for model fitting (i.e. training data) and the
remaining 20% of observations for model testing
(i.e. testing data). For each of the 5 data subsets,
we re-fit the model using training data only and
calculated AUC and kappa test statistics using the
test data that were excluded from model fitting.
The 14 random samples collected
during 2016 were also used to
test model performance using a
bootstrap procedure. We first fit
the top models selected from
each of the 4 datasets extracted
using the different bottom loca-
tion estimators, excluding the 14
random samples so they could be
used as testing data. We then cal-
culated mean AUC and kappa
statistics from 100 bootstraps
samples with re placement of the
14 random samples. The 14 ran-
dom samples contain only 4 pres-

ence observations and, be cause both presence and
ab sence data are required for diagnostics, bootstrap
subsets with 0 presence observations were re-
sampled so that all 100 bootstraps contained at
least 1 presence observation.

3.  RESULTS

3.1.  In situ observations of corals and sponges

Alcyonacean corals were the most commonly ob -
served benthic taxa group, occurring in 24% of all
trap-camera sets (Table 4). Alcyonaceans were also
the most diverse group, with at least 7 different taxa,
including Heteropolypus ritteri, Isidella sp., Keratoi-
sis sp., Paragorgia spp., Parastenella sp., Primnoidae
sp., and Swiftia simplex (Table 5). Parastenella sp.
and Isididae colonies were observed in the highest
densities, with 34 and 10 distinct colonies, respec-
tively, observed at single locations, while S. simplex,
Isididae, and H. ritteri were observed at the most
locations (Table 5). Two locations in the northeast
and 1 location in the southwest had particularly high
densities of alcyonaceans, with counts of 24−42 alcy-
onacean coral colonies of different species observed
during single camera deployments at depths ranging
from 550 to 866 m. Sponges (Classes Demospongiae
and Hexactinellida), sea pens (Order Pennatulacea),
hydrocorals (Family Stylasteridae), and black coral
(Order Antipatharia) were also observed during
camera deployments, but were less frequent than
alcy  ona  cean observations (Table 4).

Observed prevalence of alcyonacean corals was
20% from non-random sampling from commercial
fishing sets (20 out of 99 sets), 29% for random sam-
ples (4 out of 14 sets), and 55% for ESR samples (6
out of 11 sets).
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                                                           2013   2014   2015   2016 2013−2016
                                                            P:A     P:A     P:A     P:A          P:A    %P %A

Corals (Order Alcyonacea)                3:9      9:45    6:20  12:20       30:94   24   76
Sponges (Phylum Porifera)                4:8      3:51    0:26    6:26       13:111  10   90
Sea whips (Order Pennatulacea)      1:11    2:52    2:24    1:31         6:118   5    95
Hydrocorals (Family Stylasteridae)   1:11    2:52    0:26    4:28         7:117   6    94
Black corals (Order Antipatharia)     1:11    0:54    0:26    3:29         4:120   3    97
Corals or sponge                                6:6    12:42    8:18  15:17       41:83    33   67

Table 4. Presence (P):absence (A) frequencies by sampling year, and total frequen-
cies and percentages from 124 video sample sites during 2013−2016 sablefish fish-
ing trips at SGaan Kinghlas−Bowie Seamount. Note that all 2013−2015 observations
are from opportunistic sampling during regular fishing sets, whereas 2016 observa-
tions include a mix of fishing, equal stratified random, and random sampling
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3.2.  Species distribution
 modelling

The most prominent differences
in mean predicted probabilities of
presence occurred be tween the
drop location model and posterior
mode model (Fig. 3). The best-
fitting models using the 4 differ-
ent methods for extracting pre-
dictor data from landing position
(i.e. drop, posterior mode, poste-
rior medoid, posterior weighted)
explained be tween 26 and 31%
of residual deviance, with mean
AUC values ranging from 0.71 to
0.78 and maximum kappa values
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Fig. 3. (a) Mean predicted probabilities of alcyonacean corals for model using surface drop locations to extract environmental
raster data used in model fitting. (b−d) Residuals from predicted probabilities between the drop location and the alternative
models using environmental data estimated via (b) posterior mode position, (c) posterior medoid position, and (d) posterior
weighted position. Median residual shown by vertical dotted line in the histograms. For (b−d), red colouring: locations where
alternative model predicts higher probabilities than surface drop model; blue colouring: locations where alternative model 

predicts lower probabilities than surface drop model. SK-B: SGaan Kinghlas−Bowie

Family               Lowest taxon             Locations  Distinct  Counts per     Depth 
                          identified                    observed   colonies   set (range)   range (m)

Alcyoniidae      Heteropolypus ritteri       6              12              1−5          721−984

Isididae             Isidella sp.                         2                2                 1            718−721
                          Isididae                             8               29             1−10         548−795
                          Keratoisis sp.                    1                1                 1                548

Paragorgiidae  Paragorgia spp.                2                4               1−3          754−791

Primnoidae       Parastenella sp.                3               42             3−34         754−877
                          Primnoidae                       3                5               1−2          423−827

Plexauridae      Swiftia simplex                10             13              1−2          642−988

Unidentified    Alcyonacea                      20             56             1−12        423−1346
family

Table 5. Summary of alcyonacean corals (Order Alcyonacea) observed from drop
camera deployments at SGaan Kinghlas−Bowie Seamount during fishing trips from 

2013 to 2016
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ranging from 0.36 to 0.47 for the cross-validated test
datasets (Table 6). The posterior-weighted and poste-
rior medoid models performed best, with maximum
kappa in the 0.46−0.47 and 0.60−0.63 range for the
cross-validated test data and bootstrapped random
sample test data, respectively, indicating ‘moderate’
(0.41 ≤ κ ≤ 0.60) or ‘substantial’ (0.61 ≤ κ ≤ 0.80) agree-
ment between model predictions and observations
(Landis & Koch 1977). Posterior-weighted, posterior
medoid, and drop location models had AUC scores in
the 0.76−0.78 range, with ‘acceptable’ model per-
formance (Hosmer & Leme show 2005) for both the
cross-validated test data and bootstrapped random
sample test data.

Depth and slope were the most important predictor
variables and were retained in all of the best-fitting
models, while some models also included rugosity
and cumulative trap fishing as predictors (Fig. 4,
Table 6). The BPI and maximum tidal speed predictor
variables were not included in any of the top models
selected using all-subsets model fitting with the AICc
model selection criteria.

Marginal effects of the different predictors on the
probability of alcyonacean presence were generated
by varying the habitat variable of interest, while
keeping all other variables fixed at their average ob -
served values (Fig. 4). In all models, the depth effect
leads to the greatest proportion of cells in the 400−
800 m range, with high probabilities (> 40%) of alcy-
onacean coral presence and lower probabilities out-

side this depth range (Fig. 5). Model uncertainty is
lowest for depths between approximately 600 and
1200 m and increases for depths outside this range,
which is a function of smaller sample sizes at these
depths (Figs. 5d & 6). There are steep increases in the
marginal probability of coral presence for slope
increases between 20 and 45% for all models; how-
ever, the changes are greatest for the drop location
and posterior weighted models, which increase from
5−90% and 3−98%, respectively (Fig. 4). The steep
slopes along the ridge in the northeast and southwest
flank of the seamount produce patchy areas of high
probability at depths deeper than 1000 m. Probability
of presence decreases with increasing rugosity and
trap numbers for the models that included those pre-
dictors. An increased proportion of grid cells with
steep slopes (>30%) and reduced trap numbers for
1100−1350 m depths relative to 800−1100 m depths,
produces a small increase in the proportion of cells
with probability >40% for depths deeper than
1100 m and the bimodal shape in the density plots in
Fig. 5b.

Models based on the 4 trap-camera location esti-
mators have similar classification thresholds for gen-
erating maximum kappa (0.26−0.40) and predicted
prevalence equal to observed prevalence (0.32−0.35)
(Fig. 7). This is a good indicator of model accuracy, as
Freeman & Moisen (2008a) found that thresholds that
maximize kappa and generate predicted prevalence
equal to ob served prevalence have more unbiased
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Data subset             Diagnostic                     Trap-camera location estimator and predictors in top model
                                                                             Surface drop position   Posterior mode   Posterior medoid    Posterior weighted

                                                                                    Depth, slope,           Depth, slope,       Depth, slope,           Depth, slope, 
                                                                                        rugosity                       traps              rugosity, traps               rugosity

All observations     R2 adjusted                                         0.25                           0.24                       0.32                           0.27
(n = 124)                  Deviance explained (%)                   0.26                           0.27                       0.31                           0.28
                                AUC (SD)                                      0.85 (0.04)                0.85 (0.03)             0.87 (0.04)                0.87 (0.03)
                                Max. κ (SD)                                   0.50 (0.08)                0.49 (0.09)             0.62 (0.08)                0.51 (0.09)
                                Max. κ threshold                               0.26                           0.32                       0.30                           0.40

CV training data    AUC (SD)                                      0.85 (0.04)                0.86 (0.04)             0.88 (0.04)                0.87 (0.04)
(n = 99.2)                 Max. κ (SD)                                   0.55 (0.09)                0.53 (0.10)             0.64 (0.09)                0.55 (0.10)
                                Max. κ threshold (SD)                       0.30                           0.34                       0.34                           0.33

CV test data           AUC (SD)                                      0.77 (0.11)                0.71 (0.12)             0.76 (0.11)                0.78 (0.11)
(n = 24.8)                 Max. κ (SD)                                   0.46 (0.20)                0.36 (0.19)             0.47 (0.18)                0.46 (0.19)
                                Max. κ threshold (SD)                       0.34                           0.32                       0.30                           0.28

Random samples   Boot mean AUC (95% CI)       0.77 (0.50−1.00)       0.69 (0.52−0.93)   0.76 (0.51−1.00)       0.78 (0.52−1.00)
from 2016 fishing  Boot mean max. κ (95% CI)    0.57 (0.18−1.00)       0.42 (0.06−0.81)   0.63 (0.12−1.00)       0.60 (0.20−1.00)
(n = 14 with            Boot mean max.k threshold             0.47                           0.52                       0.56                           0.45
100 bootstraps)

Table 6. Model performance diagnostics for top models using 4 different estimators of trap-camera landing position to extract
predictor data. Diagnostics shown for models fit with all observations (n = 124), averages from training and test datasets using 

5-fold cross-validation (CV), and 100 bootstrap subsets of the 2016 random sampling locations.
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maps of species prevalence and that classification
thresholds for different criteria tend to converge as
model quality improves. The lowest classification
threshold is for sensitivity equal to specificity
(0.26−0.29), while the highest threshold is for maxi-
mizing PCC (0.38−0.50). The posterior medoid model
has the best performance for maximizing kappa
(0.62) and PCC (85%), compared to maximum values
of 0.49−0.51 for kappa and 81−83% PCC for the other
3 models.

Overall, the 4 models using different drop locations
predicted a similar distribution of coral habitats at the
seamount and a similar distribution of probabilities
among the i = 14 896 grid cells of size 100 m × 100 m
(Figs. 3 & 5a). The 4 different models predicting coral
habits with greater than 40% probability occupy ei-

ther 31% (drop model), 35% (posterior mode model),
38% (posterior medoid model), or 36% (posterior-
weighted model) of the modelled area. Differences
among models occur because of the predictor vari-
ables included in the top models as well as changes to
the estimated coefficients for those variables (Fig. 4).
The posterior mode model has the greatest difference
in probabilities relative to the drop model, with 14%
of grid cells with residuals > 0.2 (i.e. higher probability
relative to drop model) and 9% of grid cells with
residuals < −0.2 (i.e. lower probability relative to drop
model), that are likely related to the exclusion of the
rugosity predictor and differences in fit for the slope
predictor. There is less difference in predicted proba-
bilities between the drop location, posterior-weighted
model, and posterior medoid model (Fig. 3c,d). Differ-
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ences between the drop and medoid models are most -
ly due to the in clusion of the trap predictor variable in
the medoid model (Fig. 3c), as areas with higher trap
density have lower probability (blue) and areas with
lower trap density have higher probability (red) of
coral presence in the medoid model. The posterior-
weighted model and drop models include the same
predictors (depth, slope, rugosity), and so their differ-
ences are solely due to changes in the coefficients for
the predictors.

4.  DISCUSSION

Fisheries are regularly challenged by management
and eco-certification requirements to reduce risks
to seafloor habitats, which requires evaluation of
management strategies designed to protect habitat.
Uninformed management choices threaten fisheries

sustainability and can pose conservation risks by
concentrating fishing effort in smaller areas and
reducing flexibility for fishing fleets to avoid non-tar-
get species or sensitive benthic habitats by moving
into different areas. Due to limited information on the
distribution and abundance of coral and sponge taxa
in most fishing grounds, it is not possible to quantify
fishing risks to these habitats or evaluate the trade-
offs associated with spatial closures designed to pro-
tect them. We demonstrated a cost-efficient method
for collecting in situ presence/absence observations
of deep-water coral and sponges through the deploy-
ment of a novel deep-water camera system during
routine commercial fishing activity. Our results pro-
vide useful information for spatial management of
the SK-B MPA and sensitive benthic habitats in gen-
eral by (1) providing spatially explicit SDMs for
deep-water alcyonacean corals at the SK-B Sea-
mount, (2) quantifying spatial uncertainty in pres-
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ence/absence data and the implications for model
variable selection and performance, (3) demonstrat-
ing the implementation of a targeted sampling pro-
gramme with commercial fisheries that can improve
and validate SDMs, and (4) providing a scalable
framework for relatively cost-effective sampling of
presence/absence data for benthic habitat over large
spatial extents that cannot be easily duplicated by
dedicated research activities.

4.1.  Predictions for SK-B coral habitats

Despite the presence of an MPA since 2008 and
fishing activity since the 1980s, information on the
distribution of deep-water coral habitats at SK-B Sea -
mount was historically limited (Etnoyer 2008, DFO
2015), as early research and data collection at the
seamount focussed on catch and abundance informa-
tion for target species, such as sablefish and rockfish

(Yamanaka 2005). Exploratory ROV surveys con-
ducted in 2011 found high abundance of the coral
Primnoa pacifica on the upper plateau of SK-B for
depths between 50 and 300 m, but provided limited
observations throughout the seamount for deep-
water habitats of 400−1250 m where most sablefish
fishing occurs (Gale et al. 2017). Only re cently have
observations of benthic habitats in sablefish fishing
depths been collected on dedicated research trips; a
tow-camera survey conducted in 2015 provided ob -
servations from 11 unique transect locations at SK-B
at depths of 400−1250 m (Gale et al. 2017). Pres-
ence/absence observations of coral habitats collected
through the sablefish trap-camera re search pro-
gramme were intended to provide broader spatial
coverage and larger sample sizes that could be used
to develop and validate SDMs of coral habits within
seamount fishing grounds.

Our model predictions for alcyonacean corals at
SK-B Seamount suggest a large proportion of suit-
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able habitat in the 400−800 m depth range with high
probabilities (>0.5) of alcyonacean coral presence for
areas with slopes >30%. In fact, depth and slope
were the most important environmental predictors
for coral habitats in the top models selected, which is
consistent with findings from other studies (Woodby
et al. 2009, Masuda & Stone 2015). Slope may be
indicative of high relief areas with hard substrate
(Dunn & Halpin 2009) that is required by most corals
for settlement. Areas with steeper slopes might also
experience higher current flow rates or greater mix-
ing of bottom water layers that may influence favour-
able conditions for coral growth by (1) providing

more food through higher rates of plankton avail-
ability and (2) limiting the settlement of suspended
particles that may smother corals or reduce available
substrate for new recruitment (Genin et al. 1986, Fre -
deriksen et al. 1992, Mortensen & Buhl-Mortensen
2004, White et al. 2005). Depth is often considered a
proxy for other environmental variables important
for corals such as carbonate availability (used for
producing carbonate skeletons), temperature, and
oxygen (Woodby et al. 2009, Thresher et al. 2011,
Georgian et al. 2014). Temperature of local water
masses is likely a limiting factor for the shallow depth
range of corals, while both food supply and tempera-
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ture could be limiting factors at deeper depth ranges
(Fre de rik sen et al. 1992, Mortensen & Buhl-Mortensen
2004, Buhl-Mortensen et al. 2015).

The 400−1000 m depth range encompasses most
Alcy ona cea observations from trap cameras and by -
catch on sablefish fishing trips, with only 2 trap cam-
era presence observations deeper than this (Fig. 4,
Table 5) (Buchanan et al. 2015, 2017, 2018). The lower
probabilities for Alcyonacea coral presence in the
800−1000 m depth range reflect a lower frequency of
presence observations at these depths, which were
predominantly composed of Heteropolypus ritteri,
Para ste nella sp., and Swiftia simplex. The recent ROV
and tow-camera surveys at SK-B also found H. ritteri
(738−1200 m), Swiftia sp. (241−1195 m), and unidenti-
fied taxa in the Primnoidae family (328− 1173 m) at
deeper depths (Gale et al. 2017, Gauthier et al. 2018).
The latter was the most abundant and likely includes
observations of Parastenella ramosa, which is the
most commonly observed taxon in sablefish bycatch
at SK-B (Buchanan et al. 2015, 2017, 2018). The 2015
ROV survey documented Lepidisis sp. at 816− 1169 m
depth and observations from the Isididae family at
330− 1239 m, while our trap cameras observed Isi di -
dae in a shallower depth range of 548− 795 m. The
ROV/tow-camera transects also include Al cyo na cea
ob servations of shallower taxa such as Prim noa paci-
fica (242−731 m), Paragorgia arborea (241− 863 m),
and Calcigorgia spiculifera (201− 251 m) with depth
ranges extending into the fisheries closure that is ex-
cluded from the modelled grid and sampling space.
Future research might evaluate how our model pre-
dictions compare with species prevalence from ROV/
tow-camera transects across depths to investigate the
different depth ranges observed for Isididae. Our
model predictions will be reflective of the assemblage
of Alcyonacea taxa within the 400− 1350 m depths at
SK-B and influenced by the relative abundance of
certain taxa compared to others. Those taxa that occur
less frequently relative to others (e.g. Family Para -
gorgiidae, Table 5) will have less influence on model
fits. If needed for management objectives, future data
collection and modelling efforts could attempt to de-
velop models at the family, genus, or species level for
the more commonly occurring habitat-forming taxa at
SK-B (e.g. Parastenella ramosa, Isidella sp., Primnoa
pacifica), which might provide more precise estimates
of species prevalence across different depths and
other environmental variables.

Potential probability thresholds for correctly classi-
fying areas with presence or absence of corals were
evaluated using metrics derived from confusion
matrices, such as TSS, kappa, sensitivity (i.e. true

positive rate), specificity (i.e. true negative rate), and
PCC. The threshold-dependent metrics suggest ac -
ceptable model classification performance over a
wide range of probability thresholds between 0.26
and 0.50, depending on the model and metric, and
thus there is no single ‘best’ threshold that can
be identified for generating maps with presence/
absence. The selection of a classification threshold
will depend on specific objectives and tolerance for
false positives, false negatives, and overall prediction
accuracy. Thresholds can be adjusted to place more
emphasis on reducing false positives (i.e. model pre-
dictions of coral presence where corals do not exist)
or false negatives (i.e. model predictions of coral
absence where corals do exist). This is directly rele-
vant to the construction of measurable objectives
from conceptual goals stated for management of sen-
sitive benthic areas or regulated reserves, such as
MPAs.

Maps with probabilities avoid the need for select-
ing a presence threshold and provide more informa-
tion for risk assessment than assigning discrete val-
ues of presence or absence to each cell. For example,
our high-resolution 100 m × 100 m probability maps
can be used to rank habitat quality according to
areas with the highest probability of occurrence to
prioritize areas of highest conservation value as well
as indicate areas with greater prediction uncertainty.

Our model predictions include 95% confidence
intervals (Fig. 6) that indicate there is greater uncer-
tainty where there were fewer observations made
(e.g. depths shallower than ~600, depths deeper than
~1200 m, and slopes >35%). Maps of the uncertainty
in probability estimates provide a diagnostic for
improving model precision, whereby new sampling
strategies can be implemented to improve model
accuracy in cases where greater precision is needed
to meet management objectives. This was the case at
SK-B, where we modified the sampling design based
on an evaluation of initial models fit to 2013−2015
presence/absence data to implement new sampling
strategies in 2016−2017 (e.g. ESR sampling, random
sampling, and improved depth coverage from regu-
lar fishing sets) to improve model performance and
information for subsequent management decisions.
The ESR sampling design found that initial observa-
tions from opportunistic fishing sets (2013−2015) pro-
vided limited coverage for some combinations of
habitat variables (e.g. habitat strata, Table 2), sug-
gesting that improved information for modelling
might be achieved by targeted sampling of the
poorly represented habitat strata. The modified 2016
sampling design improved the coverage of habitat
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stratum, however; some habitat strata have fewer ob -
servations that could be targeted for future sampling.
Future sampling efforts might look to increase sam-
pling for depths between 400 and 600 m where the
model predicts high probabilities of coral presence
with greater uncertainty, if greater precision is
needed for these areas to provide management
advice. Reduced uncertainty for depths deeper than
1200 m may not be needed for management advice,
as there is less fishing at these depths. The predicted
probability maps for coral habitats at SK-B can be
used to develop and evaluate conservation objectives
for corals and sponges within a quantitative risk
 as sess ment framework. In turn, this risk assessment
framework could be transportable for application to
other bottom-contact fisheries and scalable to a
coastwide level.

4.2.  Accounting for spatial uncertainty in 
coral observations

Opportunistic presence-only data for deep-water
habitats often have low spatial accuracy where the
location of the bottom observation is only known
within several kilometres. SDMs fit with presence-
only bycatch data (for both mobile and fixed bottom
gears) often assume an observation took place at
the midpoint of the fishing event. This assumption
ignores the spatial uncertainty of bycatch observa-
tions where the bycatch may have occurred any-
where along a fishing event spanning several kilo-
metres. To account for spatial uncertainty in our
trap-camera observations and extracting environ-
mental covariates, we tested 4 different estimators
for trap landing position (surface drop position and 3
Bayesian estimators). While the 4 models using dif-
ferent trap location estimators predict a similar distri-
bution of corals and total proportion of the seamount
with coral habitats, differences in predicted probabil-
ities and estimated uncertainty across grid cells
could affect management outcomes. For example,
the posterior mode model predictions had 23% of
grid cells with probabilities ± 0.2 relative to the drop
model and the range of potential coral habitat with
greater than 40% probability ranged across models
from 31 to 38% (47−56 km2) of the modelling space.
These finer-scale spatial differences in model predic-
tions across different models could have meaningful
implications for management measures, particularly
for smaller-scale or patchy area closures designed to
optimize trade-offs between habitat protection and
maintaining fishing access.

The importance of the depth predictor variable in
all models is likely influencing many of the similarities
in predictions of coral habitats across models, since all
models used the same depth predictor data and had
similar depth effects on coral presence. Observed
depth values for model fitting do not change between
models, since depth is measured during camera de-
ployments rather than extracted from the multibeam
bathymetry raster. The other environmental predictors
were extracted using the latitude and longitude coor-
dinates of the estimated camera position on the
seafloor, which varies across the 4 models and has a
median distance of 218 m (0.005th quantile: 18 m,
0.995th quantile: 1020 m) from the surface drop loca-
tion based on the posterior medoid estimate (see Do-
herty et al. 2018 for empirical distributions of bottom
location estimates). Spatial autocorrelation in the
other predictors might also explain similarities in per-
formance between the 4 models, particularly if the
distances over which predictors are correlated is
greater than the range of spatial uncertainty (1000 m)
in trap camera observations (Naimi et al. 2011). None-
theless, differences in predictor variable values across
models did influence both model variable selection
(i.e. predictors in cluded in the top model) and coeffi-
cient estimates (i.e. relationships between coral pres-
ence and predictors), both of which affected predic-
tions for coral habitats. In our case, it appears that
model variable selection had a greater effect on pre-
dictions than the coefficient estimates. The 2 models
that included the same predictor variables (drop loca-
tion and  posterior-weighted models) had the most
similar predictions for coral habitat distribution. Dif-
ferences in the posterior mode and posterior medoid
models are related to the exclusion of the rugosity
predictor and the inclusion of the trap predictor vari-
able, respectively. The posterior mode model also had
a different fit for the slope predictor compared to
other models, which could be related to the exclusion
of the rugosity term and/or the bottom location coor-
dinates used for data extraction.

For some applications, the surface drop position
may provide a good enough estimator of the bottom
landing position for cameras deployed in sablefish
longline trap fishing gear; however, we found that the
different estimators for bottom landing position af -
fected variable selection, model performance, and
model predictions for corals at SK-B. There was an im -
provement in model performance using the posterior-
weighted and posterior medoid location models that
account for spatial uncertainty in deep-water camera
observations at SK-B. Greater improvements might
be seen in situations where there is more spatial un -
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certainty in observation locations, such as bycatch
from bottom trawls spanning several kilometres or
for models with larger spatial extents. This could be
evaluated through simulation experiments using
visual transects, such as from an ROV, where the true
bottom locations of observations are known and spa-
tial uncertainty in observation data are simulated to
test performance of different model choices for esti-
mating bottom position. Previous simulation experi-
ments have found that increasing spatial uncertainty
in observations leads to lower prediction accuracy for
SDMs and that the effect of spatial uncertainty varies
based on the degree of spatial autocorrelation in pre-
dictors (Naimi et al. 2011). Our results demonstrate
an approach to account for spatial uncertainty in
presence/ absence observations and predictive vari-
ables used for SDMs. This ap proach could be used to
improve model performance and to evaluate the
implications of ignoring this uncertainty (i.e. by simu-
lation testing different management strategies) when
SDMs are used to inform management decisions.

4.3.  Future opportunities for benthic habitat
research and management

Using cameras deployed on commercial fishing
gear to map deep-water benthic habitats over large
spatial and temporal scales offers an alternative to
ROVs, tow-cameras, and bycatch data traditionally
available for mapping coral and sponge habitats.
Deep-water video transects by ROVs or tow-cameras
can collect high-resolution spatial data and high-
quality video imagery of deep-sea bottom habitats,
but are typically not conducted over large areas of
the coast. Previous submersible, ROV, and tow-cam-
era surveys conducted in BC have often been limited
by budgets, available ship time, equipment break-
downs, and weather conditions (Yamanaka 2005,
Galand 2012, Curtis et al. 2015, Gale et al. 2017).
ROV or tow-camera transects are unlikely to provide
the region-wide spatial coverage and large sample
sizes needed for fine-scale habitat mapping in most
areas where fisheries operate; they might be more
effectively used to focus data collection on other use-
ful information for habitat risk assessment (e.g. spe-
cies composition, length composition, physical samples
for species identification, monitoring growth/
recovery, ground-truth SDMs) in conjunction with a
drop-camera or trap-camera (Williams et al. 2014,
Doherty et al. 2018) sampling programme de signed
to collect presence/absence or abundance data for
SDMs over large spatial scales. Bycatch sampling

strategies might also be used in combination with
cameras deployed in fishing gear to provide addi-
tional information, such as catch rates that can be
used as an index of abundance (Rooper et al. 2011,
2014), and physical specimens that can assist with
species identification (Buchanan et al. 2015, 2017,
2018). Ensemble modelling approaches may also be
used to develop multiple models that allow use of all
available datasets and produce weighted predictions
(Rooper et al. 2017, Georgian et al. 2019). For exam-
ple, future modelling efforts at SK-B might consider
integrating multiple models using  presence/  absence
trap-camera data, presence-only by catch data, and
ROV/tow-camera transect data (Fithian et al. 2015).

Most of the existing coral and sponge occurrence
records for BC are from bycatch data collected dur-
ing bottom trawling (Finney & Boutillier 2010). The
current DFO database for coral and sponge occur-
rences has presence records from approximately
11 300 unique locations collected between 1875 and
2010 (J. Boutillier & G. Gillepsie unpubl. data), the
majority of which are from bycatch records in the
BC groundfish commercial trawl fishery and trawl
re search surveys for groundfish and invertebrates
since 2001 (the year in which observers received
training in coral identification; Finney & Boutillier
2010). Most areas in BC have few observations with
accurate location information and lack true absence
information, limiting options for generating high-
resolution SDMs needed for effective management.
Ideally a quantitative risk assessment approach
(Welsford et al. 2014, Doherty et al. 2018) would be
used for managing fishing risks to bottom habitats
that (1) maps the spatial distribution of VMEs at fine
spatial scales over the large areas where fisheries
operate, (2) quantifies the bottom-contact area of
fishing gear and the proportion of VME habitats
contacted by fisheries, (3) estimates the damage or
mortality rates from fishing contact with habitats to
inform current status relative to some reference
level (e.g. unfished biomass), and (4) estimates
potential recovery or future damage to habitats over
spatial and temporal scales for different manage-
ment strategies (e.g. spatial closures, gear type
restrictions, effort limits, move-on rules). New
strategies for collecting bottom habitat information
are needed to provide the essential information for
steps (1) and (2), which could be achieved by
deploying cameras on commercial and survey fish-
ing sets, possibly in combination with bycatch sam-
pling strategies.

Our trap-camera system demonstrates an alterna-
tive cost-efficient approach for collecting high- quality

88



Doherty et al.: Predictive models for deep-water coral habitats

presence/absence observations for corals and
sponges that is scalable for mapping the large areas
necessary for effective risk assessment of sensitive
benthic habitats in the presence of large-scale fish-
eries. The trap-cameras have also been regularly
de ployed on the annual stratified-random coastwide
survey for BC sablefish at depths of 183−1372 m,
providing essential data for coastwide habitat map-
ping over a wide range of environmental variables.
Cameras deployed on the survey have collected
 presence/  absence video observations for corals and
sponges in 291 locations between 2013 and 2017,
which can be used to develop coastwide SDMs for
corals and sponges, and assess bottom fishing risks
to sensitive benthic habitats in coastal fisheries. An -
other advantage of deploying cameras on commer-
cial fishing trips is that more observations are col-
lected in areas with the greatest fishing effort,
leading to less uncertainty in species mapping for
areas that experience the greatest amount of bottom
contact. There is also potential to expand this ap -
proach and deploy cameras in other bottom longline
surveys or commercial fisheries on the coast. If cam-
eras are deployed on a small fraction of commercial
longline fishing or survey sets, presence/absence
datasets for corals and sponges can quickly be
assembled for most fishing areas and the data can be
used to validate the existing model and develop
more accurate SDMs for coral habitats.

Our models predict the probability of presence and
absence of coral habitats only; enhanced information
for assessing the probability of contact from fishing
gear and the subsequent risks to corals could be ob -
tained by developing model predictions for abun-
dance within grid cells (i.e. grid cells with higher
densities are more likely to experience higher
amounts of coral mortality from fishing events). The
number of colonies observed per camera deployment
could be used as an index of density, or area esti -
mates of the camera field of view could be used to
measure colonies per m2. Advances in camera tech -
no logy and automated image analysis are rapidly
opening the door for cost-efficient data collection and
data processing for monitoring deep-sea ecosystems
(Daw kins et al. 2013, Williams et al. 2014, Chuang et
al. 2016, Dawkins et al. 2017). Moving forward, cam-
era observations deployed during fishing might also
be used to estimate density and length composition
(i.e. using stereo cameras), and monitor local changes
in abundance of corals and sponge populations over
time for different levels of fishing effort.

The composition of corals and different species as -
semblages is also of interest for risk assessment, as

the probability of lethal contact from fishing gear will
be affected by coral height and morphology, and
subsequent recovery rates vary by species (Ewing &
Kilpatrick 2014, Martin-Smith & Welsford 2014, Ste -
phen son et al. 2019). In contrast to fish populations,
corals and sponges do not move or vary distribution
seasonally and are unlikely to exhibit large changes
in local abundance unless impacted by ex tensive
fishing gear or some environmental disturbance (e.g.
local temperature or oxygen changes, deep-water oil
spills, or introduction of other pollutants). This fea-
ture provides flexibility for sampling programmes
that can allow the fishing industry or surveys to
deploy cameras at sites opportunistically when they
are in the area, according to predefined sampling
plans that optimize sampling effort over multiple
years for monitoring goals (Hirzel & Guisan 2002).
Trap cameras could also be deployed regularly on
fisheries independent surveys (e.g. the random-
depth stratified sablefish survey in BC) to estimate
changes in species prevalence and abundance to
provide long-term monitoring of bottom habitats.
Colla bo rative research partnerships with bottom-
contact fisheries provide an alternative path forward
for mapping and monitoring coral and sponge habi-
tats over large spatial and temporal scales, providing
the necessary information for developing and moni-
toring conservation objectives for benthic habitats
within fisheries management plans.

4.4.  Conclusion

The deployment of cameras and other sensors on
commercial fishing gear provides a cost-efficient
means for collecting deep-sea ecological data over
the large spatial scales needed to assess fishing
risks to deep-water corals and sponges. As new ob -
servations are collected during commercial fishing
or surveys, sampling strategies and SDMs can be
regularly updated to improve model performance
and reduce uncertainty of predicted locations for
sensitive benthic habitats. The collection of benthic
habitat data during fishing operations means that
each fishing trip has the potential to provide value
in the form of (1) landings and (2) new information
for VME re search and management strategies to
reduce risks to seafloor habitats. The improved ben-
thic habitat data can be used to develop quantitative
risk assessment frameworks for VMEs, whereby
fisheries that demonstrate fishing risks to bottom
habitat that are acceptably low can maintain access
to fishing grounds.
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