Modulation of Tropical Cyclogenesis by Convectively Coupled Kelvin Waves
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Modulation of Tropical Cyclogenesis by Convectively Coupled Kelvin Waves

Filetype[PDF-37.75 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Tropical cyclone numbers can vary from week to week within a hurricane season. Recent studies suggest that convectively coupled Kelvin waves can be partly responsible for such variability. However, the precise physical mechanisms responsible for that modulation remain uncertain partly due to the inability of previous studies to isolate the effects of Kelvin waves from other factors. This study uses an idealized modeling framework—called an aquaplanet—to uniquely isolate the effects of Kelvin waves on tropical cyclogenesis. The framework also captures the convective-scale dynamics of both tropical cyclones and Kelvin waves. Our results confirm an uptick in tropical cyclogenesis after the passage of a Kelvin wave—twice as many tropical cyclones form 2 days after a Kelvin wave peak than at any other time lag from the peak. A detailed composite analysis shows anomalously weak ventilation during and after (or to the west of) the Kelvin wave peak. The weak ventilation stems primarily from anomalously moist conditions, with weaker vertical wind shear playing a secondary role. In contrast to previous studies, our results demonstrate that Kelvin waves modulate both kinematic and thermodynamic synoptic-scale conditions that are necessary for tropical cyclone formation. These results suggest that numerical models must capture the three-dimensional structure of Kelvin waves to produce accurate subseasonal predictions of tropical cyclone activity. Significance Statement Anticipating active tropical cyclone periods several weeks in advance could help mitigate the loss of lives and property due to these phenomena. Recent studies suggest that a type of tropical cloud cluster—known as convectively coupled Kelvin waves—can promote tropical cyclone formation. Kelvin waves travel around the world and can be detected days to weeks in advance. We use a simplified numerical model to isolate the effects of Kelvin waves on tropical cyclone formation. Our unique approach confirms that tropical cyclones are more likely to form 2 days after a Kelvin wave than before the wave. We also demonstrate that—contrary to previous perception—the enhancement of tropical cyclogenesis is due to both more moisture and weaker wind currents following the waves.
  • Source:
    Monthly Weather Review, 152(10), 2309-2322
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1