The Response of Extratropical Cyclone Propagation in the Northern Hemisphere to Global Warming
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Response of Extratropical Cyclone Propagation in the Northern Hemisphere to Global Warming

Filetype[PDF-7.63 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Extratropical cyclones (ETCs) are a common source of natural hazards, from heavy rain to high winds, and the direction and speed of ETC propagation influence where impacts occur and for how long. Eighteen models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) are used to examine the response of Northern Hemisphere ETC propagation to global warming. In winter, simulations show that ETCs become slower over North America and the Arctic but faster over the Pacific Ocean and part of Europe. In summer, storm propagation becomes slightly slower throughout much of the midlatitudes (30°–60°N). Trends in both seasons relate closely to the impact of global warming on upper-level (250 hPa) winds and the 850–250-hPa thickness gradient. Wherever local thickness gradients weaken in the future, ETCs travel more slowly; conversely, wherever they strengthen, ETCs travel more quickly. In contrast to past work, we find that winter storm propagation becomes more zonal over the Pacific and Atlantic Oceans, which may link to decreased atmospheric blocking and less-sinuous flow at 500 hPa. The importance of model projections of the 850–250-hPa thickness gradient for meridionality of ETC propagation remains uncertain for these regions. However, for North America, models that project stronger thickness gradients also project less-sinuous flow and more-zonal ETC propagation. Overall, this work highlights strong regional variation in how the speed and direction of ETC propagation, and the upper-level circulation patterns that govern them, respond to continued warming. Significance Statement Extratropical storms are common sources of natural hazards like heavy rain and high winds. In our analysis of projections from 18 climate models, we find that winter storms tend to move more slowly over midlatitude North America and the Arctic as the world warms but move faster over the North Pacific Ocean and part of Europe. Slight slowing of summer storms is projected throughout much of the midlatitudes. When storms move slower, their attendant hazards (like heavy precipitation) last longer for the areas they impact. Further, Atlantic winter storms travel more west to east instead of southwest to northeast, so they impact Iceland less often and the British Isles more often. Changes become more dramatic with each additional degree of global warming.
  • Source:
    Journal of Climate, 36(20), 7123-7142
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.1