Validation of GOES-16 ABI infrared spatial response uniformity
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Validation of GOES-16 ABI infrared spatial response uniformity

Filetype[PDF-935.43 KB]



Details:

  • Journal Title:
    Earth Observing Systems XXIII
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    GOES-16, the first new generation of NOAA’s geostationary satellite, was launched on November 19, 2016. The Advanced Baseline Imager (ABI) is the key payload of the mission. The instrument performance and satellite intercalibration results show that infrared (IR) radiances are well calibrated and very stable. Yet during its early post-launch tests (PLT) and post-launch product tests (PLPT) period, several calibration anomalies were identified with the IR bands: 1) the IR measurements of the Continental United States (CONUS) and mesoscale (MESO) images demonstrated an artificial periodicity of 15 minutes - Periodic Infrared Calibration Anomaly (PICA), in line with the Mode-3 timeline; and 2) the calibration coefficients displayed small discontinuities twice a day around satellite noon and midnight, which resulted in slight detectable diurnal calibration variations. This work is to report our investigation to the root causes of these anomalies, validation of the anomaly corrections, and assessment of the impacts of the corrections on the radiance quality. By examining the radiometrically calibrated space-swath radiance collected from the moon chasing events, it was found that these anomalies were attributed to the residuals of the spatial uniformity corrections for the scan mirrors. A new set of scan mirror emissivity correction Look-Up Tables (LUTs) were later delivered by the Vendor and implemented operationally. Further analyses showed that the new emissivity LUTs significantly reduced the periodic radiometric variation and diurnal variations. The same method will be applied to validate the IR spatial uniformity for the future GOES-R series ABI instruments.
  • Source:
    Earth Observing Systems XXIII (2018)
  • DOI:
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at staging-noaa.cdc.gov

Version 3.27.1