The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Operational correction and validation of the VIIRS TEB longwave infrared band calibration bias during blackbody temperature changes
-
2017
-
-
Source: Earth Observing Systems XXII (2017)
Details:
-
Journal Title:Earth Observing Systems XXII
-
Personal Author:
-
NOAA Program & Office:
-
Description:The Suomi NPP VIIRS thermal emissive bands (TEB) have been performing very well since data became available on January 20, 2012. The longwave infrared bands at 11 and 12 um (M15 and M16) are primarily used for sea surface temperature (SST) retrievals. A long standing anomaly has been observed during the quarterly warm-up-cool-down (WUCD) events. During such event daytime SST product becomes anomalous with a warm bias shown as a spike in the SST time series on the order of 0.2 K. A previous study (CAO et al. 2017) suggested that the VIIRS TEB calibration anomaly during WUCD is due to a flawed theoretical assumption in the calibration equation and proposed an Ltrace method to address the issue. This paper complements that study and presents operational implementation and validation of the Ltrace method for M15 and M16. The Ltrace method applies bias correction during WUCD only. It requires a simple code change and one-time calibration parameter look-up-table update. The method was evaluated using colocated CrIS observations and the SST algorithm. Our results indicate that the method can effectively reduce WUCD calibration anomaly in M15, with residual bias of ~0.02 K after the correction. It works less effectively for M16, with residual bias of ~0.04 K. The Ltrace method may over-correct WUCD calibration biases, especially for M16. However, the residual WUCD biases are small in both bands. Evaluation results using the SST algorithm show that the method can effectively remove SST anomaly during WUCD events.
-
Source:Earth Observing Systems XXII (2017)
-
DOI:
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: