It Is Time to Develop Sustainable Management of Agricultural Sulfur
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

It Is Time to Develop Sustainable Management of Agricultural Sulfur

Filetype[PDF-955.45 KB]



Details:

  • Journal Title:
    Earth's Future
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Globally, sulfur (S) applications to croplands result in S inputs that often exceed historical atmospheric deposition. Sulfur is applied to crops as a fertilizer, fungicide, soil conditioner, pH regulator, and carrier for other elements. However, excess S in soils and aquatic ecosystems can have detrimental ecological and biogeochemical consequences, including soil base cation depletion, surface water acidification, hydrogen sulfide toxicity, and increased production of methyl mercury. The dichotomy between S benefits to crops and environmental consequences parallels that of nitrogen and phosphorus; however, there has not yet been a focus on developing sustainable S management plans in agriculture. We review the current literature on S cycling in agricultural systems and propose solutions that reduce S inputs, losses, and ecological consequences, including field applications of organic matter, adaptation of precision agriculture, and implementation of total maximum daily loads. We suggest opportunities for technological innovation, including analysis of remote sensing imagery to identify location and timing of S deficiencies and stresses, crop genetic modification to reduce S requirements, inoculation of plants with arbuscular mycorrhizal fungi to enhance plant S acquisition, and remediation of wetlands and other anoxic environments with high S loads. We conclude with areas for continued research on S biogeochemistry.
  • Source:
    Earth's Future, 11(11)
  • DOI:
  • ISSN:
    2328-4277;2328-4277;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1