The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the U.S. Midwest
-
2020
-
-
Source: Remote Sensing of Environment, 241, 111728
Details:
-
Journal Title:Remote Sensing of Environment
-
Personal Author:
-
NOAA Program & Office:
-
Description:Solar-induced chlorophyll fluorescence (SIF) measured from space has been increasingly used to quantify plant photosynthesis at regional and global scales. Apparent canopy SIF yield (SIFyield apparent), determined by fluorescence yield (ΦF) and escaping ratio (fesc), together with absorbed photosynthetically active radiation (APAR), is crucial in driving spatio-temporal variability of SIF. While strong linkages between SIFyield apparent and plant physiological responses and canopy structure have been suggested, spatio-temporal variability of SIFyield apparent at regional scale remains largely unclear, which limits our understanding of the spatio-temporal variability of SIF and its relationship with photosynthesis. In this study, we utilized recent SIF data with high spatial resolution from two satellite instruments, OCO-2 and TROPOMI, together with multiple other datasets. We estimated SIFyield apparent across space, time, and different vegetation types in the U.S. Midwest during crop growing season (May to September) from 2015 to 2018. We found that SIFyield apparent of croplands was larger than non-croplands during peak season (July–August). However, SIFyield apparent between corn (C4 crop) and soybean (C3 crop) did not show a significant difference. SIFyield apparent of corn, soybean, forest, and grass/pasture show clear seasonal and spatial patterns. The spatial variability of precipitation during the growing season could explain the overall spatial pattern of SIFyield apparent. Further analysis by decomposing SIFyield apparent into ΦF and fesc using near-infrared reflectance of vegetation (NIRV) suggests that fesc may be the major driver of the observed variability of SIFyield apparent.
-
Source:Remote Sensing of Environment, 241, 111728
-
DOI:
-
ISSN:0034-4257
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: