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Abstract:  

Solar-induced chlorophyll fluorescence (SIF) measured from space has been increasingly 

used to quantify plant photosynthesis at regional and global scales. Apparent canopy SIF yield 

(SIFyield apparent), determined by fluorescence yield (ΦF) and escaping ratio (f
esc

), together with 

absorbed photosynthetically active radiation (APAR), is crucial in driving spatio-temporal 

variability of SIF. While strong linkages between SIFyield apparent and plant physiological 

responses and canopy structure have been suggested, spatio-temporal variability of SIFyield 

apparent at regional scale remains largely unclear, which limits our understanding of the 

spatio-temporal variability of SIF and its relationship with photosynthesis. In this study, we 

utilized recent SIF data with high spatial resolution from two satellite instruments, OCO-2 

and TROPOMI, together with multiple other datasets. We estimated SIFyield apparent across 

space, time, and different vegetation types in the U.S. Midwest during crop growing season 

(May to September) from 2015-2018. We found that SIFyield apparent of croplands was larger 

than non-croplands during peak season (July-August). However, SIFyield apparent between corn 

(C4 crop) and soybean (C3 crop) did not show a significant difference. SIFyield apparent of corn, 

soybean, forest, and grass/pasture show clear seasonal and spatial patterns. The spatial 

variability of precipitation during the growing season could explain the overall spatial pattern 

of SIFyield apparent. Further analysis by decomposing SIFyield apparent into ΦF and f
esc

 using 

near-infrared reflectance of vegetation (NIRV) suggests that f
esc

 may be the major driver of the 

observed variability of SIFyield apparent.  

 

Keywords: solar-induced chlorophyll fluorescence, OCO-2, TROPOMI, fluorescence yield, 

croplands, NIRV, escaping ratio 
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1. Introduction 

Accurate and timely estimation of ecosystem photosynthesis measured as gross primary 

production (GPP) is crucial for understanding carbon exchange between the biosphere and 

atmosphere (Beer et al., 2010). GPP also largely determines vegetation net primary 

productivity and crop yield (Guan et al., 2016; Guanter et al., 2014). Satellite measurements 

of solar-induced chlorophyll fluorescence (SIF) are increasingly used to approximate GPP 

variability across large spatial and temporal scales (Frankenberg et al., 2011; Guan et al., 

2016; Joiner et al., 2011; MacBean et al., 2018; Shiga et al., 2018). A number of studies have 

shown either linear or nonlinear relationships between GPP and canopy SIF at different 

spatial and temporal scales and from various sensors (Li et al., 2018a; Smith et al., 2018; 

Verma et al., 2017; Zuromski et al., 2018; Damm et al., 2015; Zhang et al., 2016). However, 

fundamental controls of large-scale variabilities in SIF remain unclear.  

The widely-used light use efficiency (LUE)-based GPP model (Monteith, 1972) can be 

adapted to express SIF at the top of canopy (Guanter et al., 2014): 

𝐺𝑃𝑃 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝐿𝑈𝐸 = 𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸           (1) 

and 

𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝑆𝐼𝐹𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑 

= 𝐴𝑃𝐴𝑅 × 𝑆𝐼𝐹𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑 = 𝐴𝑃𝐴𝑅 × Φ𝐹 × 𝑓𝑒𝑠𝑐         (2) 

where PAR is photosynthetically active radiation, fPAR is the fraction of absorbed 

photosynthetically active radiation, APAR is absorbed PAR and LUE is light use efficiency at 

which APAR is used in photosynthesis. Apparent canopy SIF yield (SIFyield apparent) can be 
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defined as SIF observed in the direction of the sensor per PAR absorbed by canopies. SIFyield 

apparent is jointly determined by fluorescence yield (ΦF) and escaping ratio (f
esc

, Liu et al., 2018; 

Yang and van der Tol, 2018; Zeng et al., 2019; Du et al., 2017). Empirical studies have 

reported correlations between LUE and SIFyield apparent (Yang et al., 2017; Yang et al., 2015), 

and linkage between SIFyield apparent and plant physiological response (Song et al, 2018). Based 

on Equation 2, both APAR and SIFyield apparent contribute to overall SIF variability. Although 

some studies find a strong dominance of APAR in SIF (e.g. Miao et al., 2018; Yang et al., 

2018), SIFyield apparent variation is what distinguishes SIF from APAR. Significant efforts have 

been made to derive PAR and fPAR from satellite remote sensing and ground-based 

observations (Ryu et al., 2018; Tian, 2004), yet characterization and understanding of SIFyield 

apparent remain much less studied. Existing studies have shown that SIFyield apparent can vary with 

vegetation type, plant age, growth stage, and growth conditions (Colombo et al., 2018; Miao 

et al., 2018; Sun et al., 2015). Additionally, there are indications of considerable 

spatio-temporal variations of SIFyield apparent (Joiner et al., 2011; Li et al., 2018b). However, 

understanding of SIFyield apparent variability over large spatial and temporal scales is insufficient, 

and the knowledge gap in SIFyield apparent over spatio-temporal scales is an outstanding source 

of uncertainty that limits our current understanding of SIF variability.  

Various satellite-based SIF sensors have emerged in the past decade and derived SIF 

products have progressed from coarse resolutions in space and time to finer resolution. The 

first global SIF product from Greenhouse Gases Observing Satellite (GOSAT, Frankenberg et 

al., 2011; Guanter et al., 2012; Joiner et al., 2011), and the subsequent products from Global 

Ozone Monitoring Experiment-2 (GOME-2, Joiner et al., 2013; Köhler et al., 2015) and 
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SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, 

Joiner et al., 2012; Köhler et al., 2015) provide an important opportunity to evaluate SIFyield 

apparent over large spatio-temporal scales (Joiner et al., 2011). However, due to coarse 

resolutions of those SIF products (0.5° or coarser for gridded data) and associated intra-pixel 

mixing effects, the accuracy of SIFyield apparent estimation at the vegetation-type level is limited. 

Launched on July 2, 2014, Orbiting Carbon Observatory-2 (OCO-2) retrieves SIF at a 

significantly improved spatial resolution compared with previous SIF products, though the 

spatial coverage is sparse (Frankenberg et al., 2014). The spatial resolution of an OCO-2 

footprint is approximately 1.3×2.25 km
2
. Recent studies have compared and validated OCO-2 

SIF products with GPP measurements from eddy covariance (EC) flux towers, given the 

comparable spatial footprints between GPP and SIF measurements (Li et al., 2018c; Lu et al., 

2018). Additionally, a new SIF product based on TROPOspheric Monitoring Instrument 

(TROPOMI) was released in 2018 (Köhler et al., 2018). TROPOMI measures SIF at both 

high spatial resolution and high temporal frequency, with a footprint of 3.5×7 km
2
 at nadir 

and almost daily coverage. The two high-spatial-resolution SIF datasets, OCO-2 and 

TROPOMI, have the potential to provide more accurate assessments of SIFyield apparent for 

specific vegetation types.  

The U.S. Midwest Corn Belt currently produces more than 30% of global corn and 

soybean (USDA, 2018), and has been identified as a global SIF hotspot during the boreal 

summer (Guanter et al., 2014). Therefore, a better understanding of the controls on SIF would 

likely lead to a better quantification of regional carbon budgets and improved prediction of 

crop productivity (Guan et al., 2016). To understand controls of SIF variations, estimating 
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SIFyield apparent for each vegetation type is necessary because SIFyield apparent can vary 

substantially between different vegetation types in this area. First, the SIFyield apparent of 

croplands is likely larger than that of non-croplands since SIF in the U.S. Corn Belt is 

remarkably high during crop growing season (Guanter et al., 2014). Second, within croplands, 

the GPP of corn is usually much larger than that of soybean (Joo et al., 2016; Suyker and 

Verma, 2012). This difference in photosynthesis could be attributed to canopy structure, for 

example, leaf area index (LAI) and leaf angle distribution (LAD), and plant physiology, both 

of which could potentially drive differences in SIFyield apparent (Frankenberg and Berry, 2018; 

Porcar-Castell et al., 2014). However, whether and how SIFyield apparent of corn and soybean 

differ is still not well studied. Finally, the non-crop vegetation types of forest and 

grass/pasture, for example, are also different in both physiological processes and canopy 

structures.  

This study aims to provide a comprehensive analysis of the spatio-temporal variability of 

SIFyield apparent of vegetation in the U.S. Midwest. The two newest satellite SIF datasets, i.e. 

OCO-2 and TROPOMI footprint SIF observations, are used to provide a more accurate 

estimation of SIFyield apparent of specific vegetation types. Specifically, we aim to address the 

following questions: How does SIFyield apparent of croplands differ from SIFyield apparent of 

non-croplands during crop growing season? How does SIFyield apparent of corn (C4 crop) differ 

from SIFyield apparent of soybean (C3 crop)? What are seasonal and spatial patterns of SIFyield 

apparent of the four major vegetation types? What drives variability of SIFyield apparent in space, time, 

and across vegetation types?  

 

2. Data and Methodology 
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2.1 Study region 

The study region spans 15 states in the U.S. Midwest region (Fig. 1) including North 

Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Wisconsin, Illinois, 

Michigan, Indiana, Ohio, Kentucky, Wyoming (East to 107 °W), and Colorado (East to 

107 °W). Corn and soybean are the major crop types in this area. In addition to crops, forest and 

grass/pasture are also dominant vegetation types in the U.S. Midwest. Forests are mainly 

distributed in the northeast, southeast, and west of the study area and grass/pasture is mainly 

distributed in the west (Fig. 1). Most forests are temperate deciduous, except for Ponderosa 

Pine in the west and Spruce/Fir in the north. In this study, we focused on the four main 

vegetation types: corn, soybean, forest, and grass/pasture. 

 

2.2 Satellite SIF footprint data  
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We primarily used the OCO-2 SIF Lite product (v. B8100r), which contains 
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bias-corrected SIF and other related fields for individual footprints on a daily basis (Sun et al., 
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2018). The data were obtained from (ftp://fluo.gps.caltech.edu/data/OCO2/sif_lite_B8100/). 
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The OCO-2 spectrometer measures high-resolution spectra in O2-A band (757-775 nm, full 
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width at half maximum = 0.042 nm) with a local overpass time at about 1:30 pm, which was 
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utilized for OCO-2 SIF retrievals at 757 nm (SIF757) and 771 nm (SIF771) based on in-filling 
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of solar Fraunhofer lines (Frankenberg et al., 2014). SIF values used here were calculated as 

Fig. 1 Main vegetation types (i.e. corn, soybean, grass/pasture, and forest) in the U.S. 

Midwest, derived from Cropland Data Layer of 2015 for illustration. 
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(SIF757+1.5×SIF771)/2 because SIF771 is typically ~1.5 times lower than SIF757 (Sun et al., 

2018). The nominal spatial resolution of a footprint is 1.3×2.25 km
2
, with eight footprints 
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along-track covering a 10.6 km-wide swath and a repeat cycle of approximately 16 days. SIF 

observations depend on viewing geometry (Z. Zhang et al., 2018) which for OCO-2 alternates 
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mainly between nadir mode and glint mode. We only used measurements from nadir mode 

because of slightly higher spatial resolution, a better signal-to-noise ratio over land and more 
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useful soundings in regions impacted by clouds and topography (Sun et al., 2018). We used 

only data during the crop growing season (May - September) from 2015 to 2018. Fig. 2a and 2b 
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show a summary of the spatial and temporal coverage of OCO-2 footprints used in the study. 

The footprints were distributed along separated tracks with high data density in the west; fewer 
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data were available in August and September in 2017. 

In addition to OCO-2, we also used the latest released TROPOMI SIF footprint data 

 

Fig. 2 Illustration of availability of OCO-2 and TROPOMI footprint data in both space and 

time. Panels (a) and (b) respectively represent the spatial coverage and frequency of 

observations over time for OCO-2 data from 2015 to 2018. Panels (c) and (d) are the spatial 

and temporal distributions of the number of the footprint of TROPOMI data in 2018. (e) 

shows three examples of the footprint of OCO-2 and TROPOMI. The color background 

shown in (a) and (c) represents the density of the footprint observations. 
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(ftp://fluo.gps.caltech.edu/data/tropomi/). The TROPOMI onboard Sentinel 5 Precursor 

satellite has a local overpass time at about 1:30 pm and a repeat cycle of 17 days, and 

provides spectra measurements in the near-infrared band (band 6, 727-775 nm, full width at 

half maximum = 0.38 nm), which makes SIF retrieval possible. A data-driven approach 

similar to previous studies (Guanter et al., 2015; Köhler et al., 2015) was employed to extract 

the SIF signal using spectral measurements ranging from 743 nm to 758 nm (Köhler et al., 

2018). The nominal spatial resolution of a TROPOMI footprint is 7 km along track and 3.5-15 

km across track, with a wide swath width of approximately 2,600 km. This wide swath allows 

almost daily global observations. We used available data from May to September in 2018 with 

cloud cover less than 0.3 and view zenith angle less than 10 degrees. Fig. 2e shows some 

examples of the selected TROPOMI footprints. Fig. 2c and 2d show a summary of the spatial 

and temporal availability of the total TROPOMI footprint observations used in the current 

study. 

2.3 Estimating SIFyield apparent, ΦF and f
esc

 at the satellite footprint level 

In this section, we describe ancillary data and how we process these data to estimate 

SIFyield apparent, ΦF, and f
esc

 at the satellite footprint level. SIFyield apparent at the satellite footprint 

level is calculated according to Equation 2. 

Estimating f
esc

 and ΦF over a large scale is challenging. In this study, we employed the 

following equations according to a newly developed algorithm (Zeng et al, 2019): 

𝑓𝑒𝑠𝑐 ≈
𝑁𝐼𝑅𝑣

𝑓𝑃𝐴𝑅
                   (3) 

Φ𝐹 ≈
𝑆𝐼𝐹

𝑃𝐴𝑅×𝑁𝐼𝑅𝑣
                  (4) 

NIR𝑣 = 𝑁𝐼𝑅 × 𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 ×
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
            (5) 
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where NIRv is near-infrared reflectance of vegetation, NIR and Red are reflectances of 

near-infrared and red bands. To calculate these variables, SIF data were obtained from OCO-2 

and TROPOMI datasets as described in Section 2.2. Instantaneous PAR is the output product 

from Ryu et al., (2018). An artificial neural network surrogate model (Ryu et al., 2018), 

trained from a Monte Carlo ray-tracing model (Kobayashi and Iwabuchi, 2008) was used to 

produce the product. The model was driven by MODIS cloud optical thickness (3 km 

resolution), aerosol optical depth (1 km resolution), total water vapor (1 km resolution), total 

ozone (5 km resolution), and shortwave albedo products (1 km resolution), as well as 

GMTED2010 elevation product (1 km resolution). Detailed information about the model and 

data processing can be found in Ryu et al. (2018). Four fPAR datasets were used to estimate 

SIFyield apparent. MCD15A2H from MODIS (Myneni et al., 2002) and VNP15A2H from VIIRS 

(Myneni and Knyazkhin 2018) are 8-day composite datasets with a spatial resolution of 500 

m. PROBA-V GEOV1 fPAR data are delivered every 10 days with a spatial resolution of 300 

m (Baret et al 2013). We calculated daily fPAR from the three temporal composited fPAR 

datasets using a simple linear interpolation. MCD43A4 provides daily Nadir Bidirectional 

Reflectance Distribution Function (BRDF)-Adjusted Reflectance data at a 500-meter 

resolution which were used to calculate NDVI. A simple NDVI-fPAR model was employed to 

generate the fourth fPAR estimation (Peng et al., 2012, Text S1). Only footprints with all the 

four fPAR values larger than 0.1 were included. SIFyield apparent was calculated independently 

with the four fPAR estimations. The averaged SIFyield apparent from the four estimations was 

finally used in the analysis. MCD43A4 was also used to calculate NIRV. 

2.4 Data analysis 
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We performed the following analysis to address the scientific questions raised in the 

introduction section. First, to detect the difference of SIFyield apparent between croplands (corn and 

soybean) and non-croplands, we examined relationships between the land cover fraction of 

croplands and SIFyield apparent at the satellite footprint level for both OCO-2 and TROPOMIover 

the entire study domain. The land cover fraction of different vegetation types was calculated 

from the USDA NASS Cropland Data Layer (CDL) dataset. A linear regression analysis was 

conducted for each month from May to September. The slope of the regression indicates a 

difference of SIFyield apparent between croplands and non-croplands; a positive slope means that 

SIFyield apparent of croplands is larger than that of non-croplands. We performed this analysis 

rather than directly comparing pure croplands and non-croplands footprints because most 

footprints contain mixed vegetation types.  

Second, we selected cropland dominated footprints, defined as those footprints with a 

fraction of croplands greater than 80%. We then examined relationships between corn fraction 

of the total area in a footprint and SIFyield apparent to detect the difference of SIFyield apparent between 

corn and soybean. An increasing trend of SIFyield apparent with the increase of corn fraction 

indicates that the SIFyield apparent of corn is larger than soybean. The analysis was performed over 

the entire study area and also over three small sub-regions. 

Spatial-temporal patterns of SIFyield apparent of different vegetation types were explored. 

Both f
esc

 and ΦF can contribute to the spatial-temporal patterns and differences among 

vegetation types. We collected SIFyield apparent of OCO-2 footprints for which the fraction of a 

specific vegetation type is larger than 80%. For TROPOMI data, the threshold value of the 

fraction was set to 50% for corn and soybean because few footprints remained when the 
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threshold value was set to 80%. The spatial patterns of SIFyield apparent of different vegetation 

types for each month were smoothed by averaging all available SIFyield apparent of the specific 

vegetation type within a 0.5°×0.5° grid. Seasonal patterns of SIFyield apparent were examined. The 

study area was divided into three sub-regions for each vegetation type according to spatial 

distributions of the footprints, and temporal dynamics of monthly mean SIFyield apparent were 

plotted for the three sub-regions. 

Variability of SIFyield apparent could be driven by several potential factors. First, we 

examined impacts of air temperature and precipitation on SIFyield apparent, because these climate 

variables could affect SIFyield apparent through either f
esc

 or ΦF. We plotted SIFyield apparent of each 

vegetation type in each growing season month within a climate space built by a multi-year 

average of monthly mean air temperature and monthly total precipitation. Mean air 

temperature and total precipitation for May to September were calculated from monthly 

PRISM Climate data with a spatial resolution of 4 km from 2015 to 2018 

(http://prism.oregonstate.edu/, Daly et al., 2008). Second, we examined differences in SIFyield 

apparent between grass and pasture, and among different forest types which could also arise 

from f
esc

 and ΦF. The USGS National Land Cover Database (NLCD) in 2016 was used to 

identify grass (Grassland/Herbaceous in NLCD land cover classification) and pasture 

(Pasture/Hay in NLCD land cover classification, Homer, 2015). Forest types were identified 

according to the Conus Forest Group dataset downloaded from USDA Forest Service 

(https://data.fs.usda.gov/geodata/rastergateway/forest_type/). This dataset is created by the 

USFS Forest Inventory and Analysis program and the Remote Sensing Application Center. 

Third, the start of the growing season (SOS) of the four vegetation types was examined based 
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on the Normalized Difference Phenology Index (Wang et al., 2017, Text S2). Finally, 

variabilities of f
esc

 and ΦF can help explain the variabilities of SIFyield apparent. We examined the 

differences of f
esc

 and ΦF between croplands and non-croplands, and between corn and 

soybean. We also explored the spatial and temporal patterns of f
esc

 and ΦF. The same analysis 

as for SIFyield apparent was conducted.  

 

3. Results 

3.1 Difference of SIFyield apparent between croplands and non-croplands  

The relationship between OCO-2 SIFyield apparent and cropland fraction in different growing 

months from 2015 to 2018 (Fig. 3) showed a clear seasonal pattern. In May, SIFyield apparent 

decreased with the cropland fraction, implying that SIFyield apparent of croplands was lower than 

non-croplands in the early growing season. In July and August, SIFyield apparent showed an 

increasing trend with the increase of the cropland fraction (all statistically significant with 

P<0.001). These results indicated that during the peak growing season, cropland SIFyield apparent 

was higher than non-cropland SIFyield apparent.  
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Since we have SIF footprint observations from TROPOMI in 2018, we applied the same 

analysis as above (Fig. S1). Generally, the results from TROPOMI observations were similar to 

those from OCO-2 observations, despite the different magnitudes of the slopes between SIFyield 

apparent and the cropland fraction. We further conducted the same analysis for SIFinst 

(instantaneous SIF) and SIFpar (SIF normalized by PAR, Fig. S2). The difference between 

croplands and non-croplands in SIFinst and SIFpar showed a similar seasonal pattern to that of 

SIFyield apparent. 

 

 

  

Fig. 3 Relationship between SIFyield apparent calculated from OCO-2 SIF and the fraction of 

croplands (corn and soybean). The linear fits and the equations are shown when the 

regression is significant (p<0.001). Only footprints with a cropland fraction larger than 10% 

are included. 
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Fig. 4 Relationship between SIFyield apparent and the fraction of the OCO-2 footprint covered 

by corn. The upper panel illustrates the three regions that are labeled in the bottom panel. 

The linear fits and the equations in the bottom panel are shown only when the regression is 

significant (p<0.001). Only footprints with a cropland fraction larger than 80% were 

included. 
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3.2 Difference of SIFyield apparent between Corn (C4) and Soybean (C3) 

The relationship between OCO-2 SIFyield apparent and corn fraction for the 

cropland-dominated footprints during different growing season months from 2015 to 2018 for 

different regions (Fig. 4) generally showed a weak linear relationship between SIFyield apparent 

and corn fraction, implying that SIFyield apparent of corn was similar to that of soybean. For the 

entire study domain, the relationship between SIFyield apparent and corn fraction was positively 

significant (P<0.001) in August and September but was not significant in the other three 

months. We also performed a linear regression between SIFyield apparent and corn fraction in 

three sub-regions (northern area, middle area, and eastern area) and in five growing season 

months respectively, with a total of 15 cases (Fig. 4). The relationship was significant 

(P<0.001) only in three out of the 15 cases: the northern area in July, the middle area in 

September, and the eastern area in September. Compared with SIFyield apparent, the difference of 

SIFinst and SIFpar between corn and soybean appeared to be similar (Fig. S3-S4). SIFinst and 

SIFpar of corn were significantly larger than soybean from June to September for the entire 

area. However, this difference was weak when the analysis was restricted to a small 

sub-region, with the exception of SIFinst in the northern area. 

 

3.3 Spatial and temporal patterns of SIFyield apparent 

3.3.1 Spatial pattern and potential drivers of SIFyield apparent 
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SIFyield apparent of corn and soybean calculated from the OCO-2 footprint data showed clear 

spatial patterns (Fig. 5). In May and June, the spatial difference of SIFyield apparent was low for 

both corn and soybean because it is the beginning of the growing season for those crops (Fig. 

S5). From July to August, SIFyield apparent of corn in the central Corn Belt (Iowa, Illinois, and 

Indiana) was higher than SIFyield apparent of corn in the northern and the western parts of the Corn 

Belt. SIFyield apparent of soybean showed a similar pattern to corn, despite there were fewer 

available observations defined as the fraction of soybean >80% of the footprint in the west.  

This spatial pattern of SIFyield apparent for both corn and soybean can be partly explained by 

precipitation (Fig. 6). During the peak growing season, SIFyield apparent was, in general, higher in 

Fig. 5 Spatial distributions of SIFyield apparent of corn, soybean, forest, and grassland 

calculated from the OCO-2 data. The average of all the available SIFyield apparent values within 

a 0.5°×0.5° grid was assigned to all the footprints within the grid. 
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areas with higher precipitation. SIFyield apparent in July was significantly (P<0.01) correlated with 

precipitation when the temperature was fixed to a small range. The response of SIFyield apparent to 

temperature was not clear. The linear correlation between SIFyield apparent in July and temperature 

was not significant when precipitation was fixed to a small range. In September, except for a 

small region in the central Corn Belt with high values of SIFyield apparent of corn, SIFyield apparent of 

the two crop types started to decrease, possibly because both crops matured. 

Spatial patterns of SIFyield apparent of forest and grass/pasture differed from those of corn and 

soybean (Fig. 5). In general, Forest SIFyield apparent in the west was much lower than in other 

regions during the growing season. Forest SIFyield apparent in the northeast and southeast were 

comparable. Two factors could potentially account for the observed spatial patterns. First, high 

SIFyield apparent was associated with high temperature and precipitation (Fig. 6). Second, the 

spatial distribution of the forest types and the differences of SIFyield apparent among these types 

could explained the spatial pattern of SIFyield apparent. Among all forest types, SIFyield apparent of the 

dominant forest type in the west (Ponderosa Pine) was the lowest, and SIFyield apparent of the 

dominant forest type in the southeast (Oak/Hickory) was the highest (Fig. 7). In addition to 

the general spatial pattern, a decreasing pattern of SIFyield apparent from the southeast to the 

northeast was observed in May. A potential explanation for this observation is that the SOS of 

forest in the northeast was in early May or late April, whereas the SOS of forest in the 

southeast was in March or April (Fig. S5).   
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Fig. 6 a, Distributions of SIFyield apparent of corn, soybean, forest, and grass/pasture within a 

2-D space jointly determined by monthly mean temperature (℃) and precipitation (mm). 

The SIFyield apparent was calculated from the OCO-2 footprint data from 2015 to 2018. The 

meteorological variables are multi-year mean values. SIFyield apparent was smoothed by 

averaging SIFyield within a 10 mm×0.5 ℃ window. b, Scatter plots of SIFyield apparent versus 

mean temperature used data in the vertical box shown in a. c, Scatter plots of SIFyield apparent 

versus total precipitation used data in the horizontal box shown in a. The linear fits are 

shown only when the regression is significant (p<0.01). 
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The spatial pattern of SIFyield apparent in grass/pasture demonstrated a clear gradient of 

increase from west to east. This pattern was consistent across different growing months. 

Fig. 7 Boxplots of SIFyield apparent of grass, pasture and different forest types for different 

months. Shaded areas are forest types. SIFyield apparent was calculated from OCO-2 footprint 

data from 2015 to 2018.  
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Grass/pasture is mainly distributed in the western part of the U.S. Midwest. SIFyield apparent of 

grass/pasture appeared to be lower than other vegetation types, which may also contribute to a 

lower spatial variability. Similar to the forest, the spatial variability could potentially be 

explained by two factors. First, SIFyield apparent of pasture was higher than that of grassland 

while pasture was mainly distributed in the east and grassland was distributed in the west. 

However, this may only account for a small portion of the spatial pattern of SIFyield apparent, 

because the number of footprints in pasture areas was limited. Second, high SIFyield apparent was 

observed in the wet-warm region (Fig. 6), implying the impact of meteorological factors on 

SIFyield apparent. SIFyield apparent in July was positively correlated with temperature (or 

precipitation) after fixing precipitation (or temperature, Fig. 6). 

To further corroborate our findings, we examined the spatial pattern of SIFyield apparent for 

the four vegetation types in 2018 using TROPOMI footprint data, as Fig. S6. Compared with 

the results from OCO-2, the spatial pattern of SIFyield apparent of corn from TROPOMI showed 

high values in eastern Nebraska, southern Iowa, and Illinois in June. For soybean, SIFyield 

apparent was high in the southern region. Despite these slight differences, results from the two 

datasets were similar. We also explored spatial patterns of SIFpar and SIFinst and found similar 

spatial patterns to SIFyield apparent (Fig. S7-S8). 

3.3.2 Temporal (Seasonal) pattern of SIFyield apparent  
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SIFyield apparent of corn, soybean, grass/pasture, and forest had different temporal 

variabilities from May to September (Fig. 8). Seasonal patterns of SIFyield apparent of corn and 

soybean showed a ‘bell’ shape. SIFyield apparent of corn and soybean increased from May onward, 

reaching the highest values in July or August, before decreasing to a lower value in September 

Fig. 8 Seasonal patterns of SIFyield apparent of corn, soybean, forest, and grassland in different 

regions, from OCO-2 footprint data (a-d). Each line was calculated as the median value of 

all footprints and all years within a specific region. Shading indicates one standard 

deviation. e-h show the definitions of the different regions in a-d. 
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when crops began to senesce. Despite differences in the magnitude of SIFyield apparent, this 

seasonal pattern was consistent across different sub-regions.  

For grass/pasture, the seasonal pattern of SIFyield apparent in the west was remarkably 

different from that in the east (Fig. 8). SIFyield apparent in the west showed a slightly decreasing 

trend from May to September, while in the east, SIFyield apparent decreased from May to 

September with a higher magnitude of SIFyield apparent during the growing season. Notably, there 

was a rapid decrease in SIFyield apparent from May to June. This may indicate that the seasonal 

pattern of SIFyield apparent of grass, which dominates in the west, differs from that of pasture, 

which dominates in the east (Fig. 7).  

 For forest distributed in different sub-regions, there was a lack of a universal temporal 

pattern, possibly due to the different dominant forest types in these sub-regions (Fig. 7). In the 

west, SIFyield apparent of forest started increasing in May, peaked in July and then decreased until 

September. In the southeast, SIFyield apparent showed a decreasing trend from May to September. 

In the northeast, SIFyield apparent of the forest showed a very large increase from May to June. 

possibly because the growing season of the forests in this area starts in May after which time 

SIFyield apparent decreases until September.  

We further examined seasonal patterns of SIFyield apparent derived from TROPOMI in 2018 

(Fig S9.). As expected, the monthly dynamics of SIFyield apparent from May to September 

derived from the two satellite observations were similar, except for grass/pasture in the east 

where SIFyield apparent from TROPOMI did not show a clear decreasing trend from May to 

September as OCO-2. In addition, the seasonal patterns of SIFpar and SIFinst were similar to 

those of SIFyield apparent (Fig. S10-S11).  
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3.4 Variability of f
esc

 and ΦF 

The density plots showing the relationships between ΦF or f
esc

 and croplands fraction (Fig. 

S12) suggested that both ΦF and f
esc

 contributed to the observed difference of SIFyield apparent 

between croplands and non-croplands. f
esc

 had a strong linear relationship with crop fraction 

during different growing months, while the relationship between ΦF and crop fraction was 

relatively weak compared with the relationship between f
esc

 and crop fraction. The seasonal 

dynamics of the slope between f
esc 

and crop fraction were similar to those observed between 

SIFyield apparent and crop fraction. These results imply that f
esc

 may dominate the observed 

differences in SIFyield apparent between croplands and non-croplands. 

Differences of ΦF or f
esc

 between corn and soybean can be detected during some months 

(Fig. S13-S14), although SIFyield apparent of corn and soybean were not significantly different 

across the three sub-regions (Fig 5). For example, in August, the ΦF of corn was larger than that 

of soybean, while the f
esc

 of corn was smaller than that of soybean in the three sub-regions or 

over the whole study domain. In September, corn f
esc

 was significantly lower than soybean f
esc

 

while the ΦF of corn was larger than that of soybean in the east and middle sub-regions or over 

the whole domain. 

Fig. S15 and Fig S16 showed spatial patterns of f
esc 

and
 
ΦF.

 
The spatial pattern of f

esc
 was 

similar to that of SIFyield apparent. On the other hand, the spatial pattern of ΦF contained more noise. 

No clear spatial pattern was found except that ΦF of grass/pasture increased from the west to the 

east, which matched with the pattern of SIFyield apparent. Fig. 9 showed the seasonal patterns of ΦF 

and f
esc

. ΦF generally remained stable during the growing season for all the four vegetation 
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types except for the increase from May to June for croplands. Conversely, f
esc

 showed a strong 

seasonal variability which was similar to that of SIFyield apparent.   

 

4. Discussion 

Fig. 9 Seasonal patterns of ΦF and f
esc

 of corn, soybean, forest, and grassland in different 

regions from OCO-2 footprint data. Each line was calculated as the median value of all 

footprints the regions defined in Fig. 8. Shading indicates one standard deviation. 
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4.1 Variability of SIFyield apparent  

Our study shows that SIFyield apparent of croplands is significantly larger than 

non-croplands during the peak growing season in the U.S. Midwest (July-August). This result 

is consistent with the spatial pattern of SIF during the same period in the U.S. Midwest 

observed in previous research which reveals much higher SIF values in the Corn Belt than in 

the surrounding regions (Guanter et al., 2014; Gentine and Alemohammad 2018; Joiner et al., 

2013). The higher SIF of croplands compared with non-croplands is also supported by the 

OCO-2 footprint SIF data used in this study (Fig. S3). Our analysis of SIFyield apparent 

demonstrates that the differences in SIFyield apparent between croplands and non-croplands could 

partly contribute to the remarkably high SIF of the U.S. Corn Belt. APAR also contributes to 

the high SIF (Fig. S17) but is less important than SIFyield apparent. Because the ratio of croplands 

SIFyield apparent to non-croplands SIFyield apparent in peak season, which can be roughly estimated 

from equations in Fig. 3 when crop fraction is set as 1 and 0, is much higher than that of 

APAR (Fig. S17). 

The difference in SIFyield apparent between the C4 (corn) and C3 (soybean) crops is small 

(Fig. 4). In August and September, the ΦF of corn is larger than soybean, while the f
esc

 of corn 

shows the opposite patterns which potentially explain the similar SIFyield apparent of corn and 

soybean in the two months (Fig. S13 and S14). For some other months, the similarities in f
esc

 

could possibly explain the similar patterns in SIFyield apparent given the small variation and 

differences in ΦF. Wood et al., (2017) examined OCO-2 footprint SIF retrievals in Iowa and 

southern Minnesota and found a similar magnitude of fluorescence (Fs, SIF normalized by the 

cosine of the solar zenith angle) from corn and soybean canopies. It is noteworthy that we 
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also do not find any significant difference in SIFpar (SIF normalized by PAR) between corn 

and soybean in a similar region (middle area in Fig. 5). Here SIFpar is a similar concept to Fs 

because the cosine of the solar zenith angle is a good proxy of PAR. However, when we focus 

on the whole Midwest region, both SIFinst and SIFpar of corn are larger than the counterparts of 

soybean during the peak season probably because of the different spatial distribution between 

corn and soybean.  

We present different spatial patterns of SIFyield apparent of different vegetation types using 

satellite footprint data. Previous studies have investigated spatial patterns of SIFyield apparent at 

regional or global scales (Joiner et al., 2011; Li et al., 2018b; Song et al., 2018) using 

coarse-spatial-resolution SIF products. Our study confirms that meteorological variables (e.g. 

precipitation and temperature) play roles in determining SIFyield apparent within certain vegetation 

types. In general, more precipitation leads to higher SIFyield apparent for all the vegetation types, 

while the correlation between temperature and SIFyield apparent is weak. Considering that some 

croplands are irrigated and precipitation might not directly affect the observed SIF, we checked 

the impact of VPD (Fig. S18) on SIFyield apparent and found negative correlations between VPD 

and SIFyield apparent for most cases.  

The seasonal patterns of corn and soybean SIFyield apparent from May to September generally 

follow the growth cycle of crops in the U.S. Midwest. The ‘bell’ shape curve was also found for 

wheat in northwest India and crops in western Russia during the growing season, based on the 

GOME-2 gridded dataset (Song et al., 2018; Yoshida et al., 2015). However, we did not 

observe this bell shape of SIFyield apparent for forest and grass/pasture ecosystems, which is a 

departure from prior studies (Yoshida et al., 2015). By extending the growing season to include 
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April and October, we found that SIFyield apparent of forest and grass/pasture increased during the 

start of the growing season except for grass in the west and decreased during the end of the 

growing season, although the amplitude of the shift of SIFyield apparent was not large (Fig. S19). 

To confirm the results from satellite data, we also checked the seasonal pattern of SIFyield apparent 

using ground observations at two sites at Nebraska (Text S3). Fig. S20 showed that there was a 

decreasing trend of SIFyield apparent from peak season to September for corn in 2017 and soybean 

in 2018 which is consistent with the satellite observation. Currently, we cannot provide a more 

detailed comparison because the ground data only cover the second half of the growing season 

and there are not enough OCO-2 footprints that cover the field sites. The factors that we 

observed to correlate with the spatial pattern of SIFyield apparent, such as precipitation and 

temperature, may influence the seasonal cycle of SIFyield apparent (Li et al., 2018b). We also 

recognize that the seasonal cycle of plant growth usually resembles the seasonal cycle of 

environmental factors, which makes it difficult to fully disentangle the influences of abiotic 

factors (environmental factors) and physical factors (e.g. canopy structure, leaf optical property) 

on SIFyield apparent.  

 

4.2 Variabilities of f
esc

 and ΦF 

The apparent canopy SIF yield is a product of f
esc

 and ΦF. Our results suggest that f
esc

 may 

be a major driver of the observed seasonal dynamic of SIFyield apparent. The seasonal pattern of f
esc

 

is similar to that of SIFyield apparent for all the four vegetation types. We also notice that some 

results are not as expected. For example, the seasonal pattern of f
esc

 of crops shows a large 

increase from June to July. At first sight, we might expect that f
esc

 should decrease with the 
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rapid increase of LAI during the early growing season because the fraction of canopy gaps for 

SIF to escape will decrease. However, for far-red SIF, previous studies based on the Soil 

Canopy Observation, Photochemistry and Energy (SCOPE) model reported a contrary result 

(Fournier et al., 2012; Du et al., 2017; Yang and Van der Tol, 2018). Escaping ratio increases 

with LAI due to multiple scattering. LAD can also influence f
esc

. Some simulation analyses 

show that escaping ratio with planophile or spherical LAD is much higher than that of 

erectophile vegetation (Migliavacca et al., 2017; Zeng et al., 2019), and experimental data also 

support this argument (Du et al., 2017). However, more field observations are needed to 

address whether there is a shift of erectophile canopy to planophile canopy for crops during the 

early season. Another possible cause of the observed pattern is the increasing canopy cover in 

spring in driving the increasing f
esc

 estimation. LAI and LAD could also be used to explain the 

low value of f
esc

 of grassland in the west because the grass in arid and semi-arid regions usually 

has low LAI and erectophile LAD (Diana et al., 2000; Holder et al., 2012). Compared to f
esc

, the 

monthly median value of ΦF remains stable. However, the high variance of ΦF within a month 

implies that ΦF may play an important role at small time scales. With regard to the spatial 

pattern, we find a clear spatial pattern of f
esc

, while the spatial pattern of ΦF has more noise. A 

probable explanation is that f
esc

 is determined by the canopy structure and leaf optical properties, 

which are stable during specific time periods, whereas ΦF reflects the physiology of vegetation 

which can be influenced by more rapidly varying environmental conditions. Another simple 

explanation is that the estimation of SIF contains more noise than the estimation of f
esc

.  

The impact of meteorological factors on SIFyield apparent could be attributable at least in 

part to both f
esc

 and ΦF. The spatial pattern of f
esc

 can be influenced by meteorological factors. 
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For example, the LAD of soybeans is controlled by leaf water potential, and under water 

stress conditions, soybean leaves tend to be more vertical (Oosterhuis et al., 1985). 

Additionally, plants in arid areas may have steeper leaf angles to reduce rainfall interception 

by leaves and increase soil infiltration (Holder, 2012) or to minimize light interception and 

leaf temperature which is usually in excess in those regions. Similarly, LAI of grass has been 

reported to increase with precipitation (Diana et al., 2000), which could also change f
esc

. ΦF 

reflects the distribution of the absorbed energy, which is likely also sensitive to 

meteorological conditions through the dynamics changes of non-photochemical quenching 

(NPQ) and photochemical quenching (PQ) in relation to various plant abiotic stresses 

(Cendrero-mateo et al., 2015; Frankenberg and Berry, 2018; Xu et al., 2018). 

4.3 Uncertainties and Limitations 

Quantifying f
esc

 and ΦF over large scales is a challenging but important task. A handful of 

methods have been developed (Liu et al., 2018; Romero et al., 2018; Yang and van der Tol, 

2018; Zeng et al., 2019). We adopt a method developed recently by Zeng et al. (2019), which 

can be easily applied over large spatial scales. The approach is demonstrated to be effective by 

simulation analysis using the SCOPE model and the Discrete Anisotropic Radiative Transfer 

(DART) model. But some uncertainties are introduced during the application of the approach. 

First, wavelengths of SIF (771nm and 757 nm for OCO-2, 740 nm for TROPOMI) are not 

consistent with the MODIS NIR band (858 nm) which is used to calculate f
esc

. However, this 

impact is small in practice, as assessed by Zeng et al., (2019). Second, the sun-canopy-sensor 

geometry of SIF is different from that of MODIS. To minimize this effect, we only used OCO-2 

observations taken in ‘nadir’ mode, TROPOMI data with view zenith angle less than 10 
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degrees, and MODIS Nadir BRDF-Adjusted Reflectance data. The uncertainty caused by 

sun-canopy-sensor geometry could also influence the seasonal pattern of SIFyield apparent due to 

the varying solar zenith angle for different seasons. Third, when vegetation cover is extremely 

low, this approach can break down (Zeng et al., 2019). Although there are some potential 

uncertainties in the analysis, it is an important step toward decomposing SIFyield apparent into f
esc

 

and ΦF, which represents a necessary advancement toward fully interpreting observed SIF 

signals. 

Accurate estimation of SIFyield apparent depends on reliable fPAR datasets. There are several 

fPAR products available. These datasets are produced from measurements from different 

instruments using different retrieval algorithms which potentially generate discrepancies 

among fPAR datasets. For example, inter-comparisons with other fPAR products show that 

there is an overestimation of the retrievals at low fPAR values in MODIS fPAR products (Yan 

et al., 2016). In this study, we used four approaches to estimate fPAR. Fig. S21 showed the 

standard deviation (SD) of SIFyield apparent calculated from the four fPAR values. The results 

demonstrated that the SD was much lower than the corresponding mean SIFyield apparent (Fig. 5) 

for most cases, while for corn and soybean in May, the SD could be higher. This is probably 

because the relative uncertainties of all terms in SIFyield apparent and f
esc

 are higher for low fPAR 

values. 

Although this study used state-of-the-art satellite-based SIF products, these SIF products 

still have limitations. First, SIF is a weak signal consisting of 1%-5% of the total absorbed 

energy (Frankenberg et al., 2018), and satellite-based SIF measurements still contain possibly 

uncertainties. Sun et al., (2017) compared OCO-2 retrievals with airborne measurements of SIF 
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with the Chlorophyll Fluorescence Imaging Spectrometer (CFIS) and found R
2
 between 

OCO-2 and CFIS SIF was 0.71. Second, OCO-2 footprint observations are discrete samples, 

and they are not spatially and temporally continuous. We also used TROPOMI footprint data 

which provides better spatial and temporal details due to the greatly improved spatio-temporal 

coverage of the dataset compared with OCO-2. However, we found some areas with lower 

valid data coverage, for example, soybean crops in Iowa. This is probably because the spatial 

resolution of TROPOMI is not fine enough to get enough pure footprints. The readers should be 

aware that there is a consistent difference in the absolute value of SIF between OCO-2 and 

TROPOMI because the wavelength of the two SIF retrievals is not the same. An alternative 

method would be to use downscaled (Duveiller and Cescatti, 2016) or reconstructed (Gentine 

and Alemohammad, 2018; Li and Xiao, 2019; Y. Zhang et al., 2018) gridded SIF data. 

However, we purposely decided not to use any of these SIF products here, as these downscaled 

or reconstructed data include assumptions that could skew our findings. Third, the temporal 

frequency (monthly) in our analysis offers only a coarse view of seasonal patterns. Especially 

during the period from May to June for crops and forests in the northeast when the plants start to 

grow and the canopy structures and physiology status change rapidly. This could potentially be 

solved with TROPOMI data with high temporal frequency in the future. New measurements 

from the site level scale could provide more information. Finally, SIFyield apparent should be 

wavelength dependent since both the emitted SIF spectrum and the reflectance at leaf level are 

wavelength-dependent (Verrelst et al., 2015). However, the OCO-2 footprint dataset provides 

SIF at 771 nm and 757 nm, while TROPOMI SIF is only available at 740 nm. 

4.4 Contribution to understand SIF and the SIFyield apparent: LUE relationship 
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This study’s findings have many important implications. Most importantly, APAR and 

SIFyield apparent jointly determine variability in SIF. APAR correlates more with plant structural 

properties and pigment content, while SIFyield apparent is likely to carry both canopy structure 

and plant physiology signals. Leaf-level and canopy-level studies have found evidence of 

potential effects from plant physiological such as Vcmax etc. (Zhang et al., 2014), stomatal 

conductance (Flexas et al., 2002), and electron transport rate (Guan et al., 2016), as well as 

canopy structure (Fournier et al., 2012) such as LAD (Du et al., 2017; Zhang et al., 2016) and 

LAI (Du et al., 2017; Yang and van der Tol, 2018). Our regional-level study reveals 

differences in SIFyield apparent across space and time and between vegetation cover types 

implying the importance of SIFyield apparent in driving the variability of canopy SIF. The findings 

further emphasize the important role of the escaping ratio (canopy structure). 

The significant variations of SIFyield apparent revealed in this study may help foster 

modeling of GPP at large scales. Similarities between the GPP and SIF equations (Equation 1 

and 2) lead to a formal equivalence between GPP: SIF and LUE: SIFyield apparent. The 

equivalence of the two equations could help to estimate GPP directly from satellite SIF 

observation and to better understand what determines the GPP: SIF slope but only when a 

mechanistic relationship between LUE and SIFyield apparent is established. Physiologically, there 

is a complicated coupling between LUE and ΦF under various light and plant stress conditions 

(Schlau-Cohen and Berry 2015, Van Der Tol et al., 2014). In addition to ΦF, f
esc

 and LUE may 

also casually covary due to temporal covariation between plant structure and plant function. 

The near-infrared reflectance is related to leaf nitrogen content and the ratio of sun-exposed leaf 

area to total leaf area which are determinants of photosynthetic capacity (Ollinger et al., 2008, 
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Knyazikhin et al., 2013). Meanwhile, the near-infrared reflectance is also supposed to be 

correlated to f
esc 

(Yang and van der Tol, 2018). Thus the variability of f
esc

 may be associated 

with the variability of LUE. Studies using field-level observations have intended to provide an 

empirical estimation of the LUE: SIFyield apparent relationship (Damm et al., 2010; Miao et al., 

2018; Verma et al., 2017; Yang et al., 2018; Yang et al., 2015). However, the relationship 

varies across different seasons and environmental conditions. Further efforts are required by 

combining field-level observations, especially long-term observations (Miao et al., 2018; 

Yang et al., 2018), and satellite observations to constrain these relationships and advance 

understanding of the underlying controlling factors. 

 

5. Conclusions  

In this study, we conducted a systematic assessment of the spatio-temporal variability of 

SIFyield apparent of corn, soybean, forest, and grass/pasture in the U.S. Midwest during the crop 

growing season. The state-of-the-art satellite-based SIF products from OCO-2 and TROPOMI 

footprint retrievals were used to estimate SIFyield apparent of specific vegetation types. The high 

spatial resolution of the footprints enables accurate estimation of SIFyield apparent for each 

vegetation type by reducing the intra-pixel mixture effects. Our analysis leads to four main 

conclusions: 1) SIFyield apparent of croplands (i.e. corn and soybean) was higher than that of 

non-croplands during the peak growing season (July and August) which contributed to the 

high SIF observed in the U.S. Corn Belt in the summer. 2) SIFyield apparent of corn and soybean 

did not show significant differences. 3) Different seasonal and spatial patterns of SIFyield apparent 

were observed among the four vegetation types, which can be partially explained by 
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meteorological factors (i.e. precipitation and temperature) and intra-vegetation type variability 

(i.e. among different forest types, and between grass and pasture). 4) The escaping ratio may 

be the major driver of the observed variability of SIFyield apparent. 

 

Acknowledgments:  

K.G., C.W., J.C., B.P., C.A., G.M., thank the financial support from NASA Terrestrial 

Ecosystem Program through the Carbon Monitoring System Program (80NSSC18K0170) and 

NASA New Investigator Program (NNX16AI56G), and USDA NIFA Program. K.G. and C.F. 

have been supported by the NASA Terrestrial Ecosystem Program through the Carbon Cycle 

Science Program (NNX17AE14G).  

 

References: 

Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makmara, H., Pacholczyk, P., Smets, B. 2013. 

GeoV1: LAI, FAPAR Essential Climate Variables and FCOVER global time series 

capitalizing over existing products. Part 1: Principles of development and production. 

Remote Sensing of Environment, 137, 299–309. 

https://doi.org/10.1016/j.rse.2012.12.027  

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., 

Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., 

Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., 

Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial 

Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. 

Science. 329, 834–838. https://doi.org/10.1126/science.1184984 

Cendrero-mateo, M.P., Carmo-silva, A.E., Porcar-castell, A., Hamerlynck, E.P., Papuga, S.A., 

Moran, M.S., 2015. Dynamic response of plant chlorophyll fluorescence to light , water 

and nutrient availability. Functional Plant Biology. 42, 746-757. 



 49 

https://doi.org/10.1071/FP15002 

Colombo, R., Celesti, M., Bianchi, R., Campbell, P.K.E., Cogliati, S., Cook, B.D., Corp, L.A., 

Damm, A., Domec, J.C., Guanter, L., Julitta, T., Middleton, E.M., Noormets, A., 

Panigada, C., Pinto, F., Rascher, U., Rossini, M., Schickling, A., 2018. Variability of 

sun-induced chlorophyll fluorescence according to stand age-related processes in a 

managed loblolly pine forest. Glob. Chang. Biol. 24, 2980–2996. 

https://doi.org/10.1111/gcb.14097 

Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., and 

Pasteris, P.A., 2008. Physiographically-sensitive mapping of temperature and 

precipitation across the conterminous United States. International Journal of Climatology, 

28, 2031-2064. https://doi.org/10.1002/joc.1688 

Damm, A., Erler, A., Gioli, B., Hamdi, K., Hutjes, R., Kosvancova, M., et al. (2010). Remote 

sensing of sun induced fluorescence yield to improve modelling of diurnal courses of 

gross primary production (GPP). Global Change Biology, 16, 171–186. 

https://doi.org/10.1111/j.1365-2486.2009.01908.x 

Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., Hueni, A., Buchmann, N., Eugster, 

W., Ammann, C., Schaepman, M.E., 2015. Far-red sun-induced chlorophyll fluorescence 

shows ecosystem-specific relationships to gross primary production: An assessment 

based on observational and modeling approaches. Remote Sensing of Environment 166, 

91-105. https://doi.org/10.1016/j.rse.2015.06.004 

Diana, R., Debra, P., William, K., 2000. Changes in grassland canopy structure across a 

precipitation gradient. J. Veg. Sci. 11, 359–368. https://doi.org/10.2307/3236628 

Du, S., Liu, L., Liu, X., Hu, J., 2017. Response of Canopy Solar-Induced Chlorophyll 

Fluorescence to the Absorbed Photosynthetically Active Radiation Absorbed by 

Chlorophyll. Remote Sens. 9, 911. https://doi.org/10.3390/rs9090911 

Duveiller, G., Cescatti, A., 2016. Remote Sensing of Environment Spatially downscaling 

sun-induced chlorophyll fl uorescence leads to an improved temporal correlation with 

gross primary productivity. Remote Sens. Environ. 182, 72–89. 

https://doi.org/10.1016/j.rse.2016.04.027 

Flexas, J., Mariano Escalona, J., Evain, S., Gulías, J., Moya, I., Barry Osmond, C., Medrano, 



 50 

H., 2002. Steady-state chlorophyll fluorescence (fs) measurements as a tool to 

followvariations of net CO2 assimilation and stomatal conductance during water-stress 

in c3 plants. Physiologia Plantarum. 114, 231–240. 

https://doi.org/10.1034/j.1399-3054.2002.1140209.x 

Fournier, A., Daumard, F., Champagne, S., Ounis, A., Goulas, Y., Moya, I., 2012. Effect of 

canopy structure on sun-induced chlorophyll fluorescence. ISPRS Journal of 

Photogrammetry and Remote Sensing 68, 112-120. 

https://doi.org/10.1016/j.isprsjprs.2012.01.003 

Frankenberg, C., Berry, J., 2018. Solar Induced Chlorophyll Fluorescence: Origins, Relation 

to Photosynthesis and Retrieval. Comprehensive Remote Sensing. Elsevier. 1986, 

143-162 https://doi.org/10.1016/B978-0-12-409548-9.10632-3 

Frankenberg, C., Dell, C.O., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., Taylor, 

T.E., 2014. Prospects for chlorophyll fl uorescence remote sensing from the Orbiting 

Carbon Observatory-2. Remote Sens. Environ. 147, 1–12. 

https://doi.org/10.1016/j.rse.2014.02.007 

Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., Toon, G.C., 

Butz, A., Jung, M., Kuze, A., Yokota, T., 2011. New global observations of the terrestrial 

carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary 

productivity. Geophys. Res. Lett. 38, 1–6. https://doi.org/10.1029/2011GL048738 

Gentine, P., Alemohammad, S.H., 2018. Reconstructed Solar-Induced Fluorescence: A 

Machine Learning Vegetation Product Based on MODIS Surface Reflectance to 

Reproduce GOME-2 Solar-Induced Fluorescence. Geophys. Res. Lett. 45, 3136–3146. 

https://doi.org/10.1002/2017GL076294 

Guan, K., Berry, J.A., Zhang, Y., Joiner, J., Guanter, L., Badgley, G., Lobell, D.B., 2016. 

Improving the monitoring of crop productivity using spaceborne solar-induced 

fluorescence. Glob. Chang. Biol. 22, 716–726. https://doi.org/10.1111/gcb.13136 

Guanter, L., Aben, I., Tol, P., Krijger, J.M., Hollstein, A., Köhler, P., Damm, A., Joiner, J., 

Frankenberg, C., 2015. Potential of the TROPOspheric Monitoring Instrument 

(TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial 

chlorophyll fluorescence. Atmos. Meas. Tech., 8, 1337–1352. 



 51 

https://doi.org/10.5194/amt-8-1337-2015 

Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P.E., Gómez-dans, J., Kuze, A., Suto, H., 

Grainger, R.G., 2012. Retrieval and global assessment of terrestrial chlorophyll fl 

uorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236–251. 

https://doi.org/10.1016/j.rse.2012.02.006 

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., Huete, 

A.R., Zarco-Tejada, P., Lee, J.-E., Moran, M.S., Ponce-Campos, G., Beer, C., 

Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J.M., 

Griffis, T.J., 2014. Global and time-resolved monitoring of crop photosynthesis with 

chlorophyll fluorescence. Proc. Natl. Acad. Sci. 111, E1327–E1333. 

https://doi.org/10.1073/pnas.1320008111 

Holder, C.D., 2012. The relationship between leaf hydrophobicity , water droplet retention , 

and leaf angle of common species in a semi-arid region of the western United States. 

Agric. For. Meteorol. 152, 11–16. https://doi.org/10.1016/j.agrformet.2011.08.005 

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., 

Wickham, J., Megown, K., 2015. Completion of the 2011 National Land Cover Database 

for the Conterminous United States – Representing a Decade of Land Cover Change 

Information. Photogrammetric Engineering and Remote Sensing, 81, 345-354. 

https://doi.org/10.14358/PERS.81.5.345 

Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A.P., Middleton, E.M., Huemmrich, 

K.F., Yoshida, Y., Frankenberg, C., 2013. Global monitoring of terrestrial chlorophyll 

fluorescence from moderate-spectral-resolution near-infrared satellite measurements: 

methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–

2823. https://doi.org/10.5194/amt-6-2803-2013 

Joiner, J., Yoshida, Y., Vasilkov, A.P., Middleton, E.M., Campbell, P.K.E., Yoshida, Y., Kuze, 

A., Corp, L.A., 2012. Filling-in of near-infrared solar lines by terrestrial fluorescence 

and other geophysical effects: Simulations and space-based observations from 

SCIAMACHY and GOSAT. Atmos. Meas. Tech. 5, 809–829. 

https://doi.org/10.5194/amt-5-809-2012 

Joiner, J., Yoshida, Y., Vasilkov, A.P., Yoshida, Y., Corp, L.A., Middleton, E.M., 2011. First 



 52 

observations of global and seasonal terrestrial chlorophyll fluorescence from space. 

Biogeosciences 8, 637–651. https://doi.org/10.5194/bg-8-637-2011 

Joo, E., Hussain, M.Z., Zeri, M., Masters, M.D., Miller, J.N., Gomez-casanovas, N., Delucia, 

E.H., 2016. The influence of drought and heat stress on long-term carbon fluxes of 

bioenergy crops grown in the Midwestern USA. Plant Cell Environ. 39, 1928–1940. 

https://doi.org/10.1111/pce.12751 

Khatami, R., & Mountrakis, G. (2012). Implications of classification of methodological 

decisions in flooding analysis fromhurricane Katrina. Remote Sensing, 4(12), 3877–

3891 

Kobayashi, H., Iwabuchi, H., 2008. A coupled 1-D atmosphere and 3-D canopy radiative 

transfer model for canopy reflectance, light environment, and photosynthesis simulation 

in a heterogeneous landscape. Remote Sensing of Environment, 112, 173–185. 

https://doi.org/10.1016/j.rse.2007.04.010 

Köhler, P., Frankenberg, C., Magney, T.S., Guanter, L., Joiner, J., Landgraf, J., 2018. Global 

retrievals of solar induced chlorophyll fluorescence with TROPOMI: first results and 

inter-sensor comparison to OCO-2. Geophys. Res. Lett. 45, 456–463. 

https://doi.org/10.1029/2018GL079031 

Köhler, P., Guanter, L., Joiner, J., 2015. A linear method for the retrieval of sun-induced 

chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 

2589–2608. https://doi.org/10.5194/amt-8-2589-2015 

Li, X., Xiao, J., 2019. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll 

Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 11, 517. 

https://doi.org/10.3390/rs11050517 

Li, X., Xiao, J., He, B., 2018a. Chlorophyll fluorescence observed by OCO-2 is strongly 

related to gross primary productivity estimated from flux towers in temperate forests. 

Remote Sens. Environ. 204, 659–671. https://doi.org/10.1016/j.rse.2017.09.034 

Li, X., Xiao, J., He, B., 2018b. Higher absorbed solar radiation partly offset the negative 

effects of water stress on the photosynthesis of Amazon forests during the 2015 drought. 

Environ. Res. Lett. 13, 044005. https://doi.org/10.1088/1748-9326/aab0b1 

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A.R., Emmel, C., Hollinger, D.Y., 



 53 

Krasnova, A., Mammarella, I., Noe, S.M., Ortiz, P.S., Rey-Sanchez, A.C., Rocha, A. V., 

Varlagin, A., 2018c. Solar-induced chlorophyll fluorescence is strongly correlated with 

terrestrial photosynthesis for a wide variety of biomes: First global analysis based on 

OCO-2 and flux tower observations. Glob. Chang. Biol. 24, 3990–4008. 

https://doi.org/10.1111/gcb.14297 

Liu, X., Guanter, L., Liu, L., Damm, A., Malenovský, Z., Rascher, U., Peng, D., Du, S., 

Gastellu-Etchegorry, J.P., 2018. Downscaling of solar-induced chlorophyll fluorescence 

from canopy level to photosystem level using a random forest model. Remote Sens. 

Environ. https://doi.org/10.1016/j.rse.2018.05.035 

Lu, X., Cheng, X., Li, X., Tang, J., 2018. Opportunities and challenges of applications of 

satellite-derived sun-induced fluorescence at relatively high spatial resolution. Sci. Total 

Environ. 619–620, 649–653. https://doi.org/10.1016/j.scitotenv.2017.11.158 

MacBean, N., Maignan, F., Bacour, C., Lewis, P., Peylin, P., Guanter, L., Köhler, P., 

Gómez-Dans, J., Disney, M., 2018. Strong constraint on modelled global carbon uptake 

using solar-induced chlorophyll fluorescence data. Sci. Rep. 8, 1–12. 

https://doi.org/10.1038/s41598-018-20024-w 

Miao, G., Guan, K., Yang, X., Bernacchi, C.J., Berry, J.A., DeLucia, E.H., Wu, J., Moore, 

C.E., Meacham, K., Cai, Y., Peng, B., Kimm, H., Masters, M.D., 2018. Sun-Induced 

Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field 

from Seasonally Continuous Measurements. J. Geophys. Res. Biogeosciences 123, 610–

623. https://doi.org/10.1002/2017JG004180 

Migliavacca, M., Perez-Priego, O., Rossini, M., El-Madany, T.S., Moreno, G., van der Tol, C., 

Rascher, U., Berninger, A., Bessenbacher, V., Burkart, A., Carrara, A., Fava, F., Guan, 

J.H., Hammer, T.W., Henkel, K., Juarez-Alcalde, E., Julitta, T., Kolle, O., Martín, M.P., 

Musavi, T., Pacheco-Labrador, J., Pérez-Burgueño, A., Wutzler, T., Zaehle, S., Reichstein, 

M., 2017. Plant functional traits and canopy structure control the relationship between 

photosynthetic CO2uptake and far-red sun-induced fluorescence in a Mediterranean 

grassland under different nutrient availability. New Phytol. 214, 1078–1091. 

https://doi.org/10.1111/nph.14437 

Monteith, J.L., 1972. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 



 54 

9, 747. https://doi.org/10.2307/2401901 

Myneni, R., Hoffman, Y., Knyazikhin, 2002. Global products of vegetation leaf area and 

fraction absorbed PAR from one year of MODIS data. Remote Sensing of. Environment 

76, 139–155. https://doi.org/10.1016/S0034-4257(02)00074-3 

Myneni, R., Knyazkhin, Y. (2018). VIIRS/NPP Leaf Area Index/FPAR 8-Day L4 Global 

500m SIN Grid V001 [Data set]. NASA EOSDIS Land Processes DAAC. doi: 

10.5067/VIIRS/VNP15A2H.001 

Ollinger, S. V., Richardson, A. D., Martin, M. E., Hollinger, D. Y., Frolking, S. E., Reich, P. 

B.,et al. (2008). Canopy nitrogen, carbon assimilation, and albedo in temperate and 

borealforests: Functional relations and potential climate feedbacks. Proceedings of 

theNational Academy of Sciences of the United States of America, 105, 19336–19341. 

Oosterhuis, D.M., Walker, S., Eastham, J., 1985. Soybean Leaflet Movements as an Indicator 

of Crop Water Stress. Crop Science. 25, 1101–1106. 

https://doi.org/10.2135/cropsci1985.0011183X002500060048x 

Peng, D., Zhang, B., Liu, L., Fang, H., Chen, D., Hu, Y., Liu, L., 2012. Characteristics and 

drivers of global NDVI-based FPAR from 1982 to 2006 26, 1–15. 

https://doi.org/10.1029/2011GB004060 

Porcar-castell, A., Tyystjärvi, E., Atherton, J., Tol, C. Van Der, Flexas, J., Pfündel, E.E., 

Moreno, J., Frankenberg, C., Berry, J.A., 2014. Linking chlorophyll a fluorescence to 

photosynthesis for remote sensing applications : mechanisms and challenges 65, 4065–

4095. https://doi.org/10.1093/jxb/eru191 

Romero, J.M., Cordon, G.B., Lagorio, M.G., 2018. Modeling re-absorption of fluorescence 

from the leaf to the canopy level. Remote Sens. Environ. 204, 138–146. 

https://doi.org/10.1016/j.rse.2017.10.035 

Ryu, Y., Jiang, C., Kobayashi, H., Detto, M., 2018. MODIS-derived global land products of 

shortwave radiation and diffuse and total photosynthetically active radiation at 5 km 

resolution from 2000. Remote Sens. Environ. 204, 812–825. 

https://doi.org/10.1016/j.rse.2017.09.021 

Shiga, Y.P., Tadić, J.M., Qiu, X., Yadav, V., Andrews, A.E., Berry, J.A., Michalak, A.M., 2018. 

Atmospheric CO2 observations reveal strong correlation between regional net biospheric 

carbon uptake and solar-induced chlorophyll fluorescence. Geophys. Res. Lett. 45, 



 55 

1122–1132. https://doi.org/10.1002/2017GL076630 

Smith, W.K., Biederman, J.A., Scott, R.L., Moore, D.J.P., He, M., Kimball, J.S., Yan, D., 

Hudson, A., Barnes, M.L., MacBean, N., Fox, A.M., Litvak, M.E., 2018. Chlorophyll 

Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity 

Dynamics Across Dryland Ecosystems of Southwestern North America. Geophys. Res. 

Lett. 45, 748–757. https://doi.org/10.1002/2017GL075922 

Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W., Zhang, Y., 2018. Satellite 

sun-induced chlorophyll fluorescence detects early response of winter wheat to heat 

stress in the Indian Indo-Gangetic Plains. Glob. Chang. Biol. 24, 4023–4037. 

https://doi.org/10.1111/gcb.14302 

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T., 2018. 

Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon 

Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. 

Remote Sens. Environ. 209, 808–823. https://doi.org/10.1016/j.rse.2018.02.016 

Sun, Y., Fu, R., Dickinson, R., Joiner, J., Frankenberg, C., Gu, L., Xia, Y., Fernando, N., 2015. 

Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: 

Insights from two contrasting extreme events. J. Geophys. Res. Biogeosciences 120, 

2427–2440. https://doi.org/10.1002/2015JG003150 

Suyker, A.E., Verma, S.B., 2012. Gross primary production and ecosystem respiration of 

irrigated and rainfed maize – soybean cropping systems over 8 years. Agricultural and 

Forest Meteorology. 165, 12–24. https://doi.org/10.1016/j.agrformet.2012.05.021 

Tian, Y., 2004. Comparison of seasonal and spatial variations of leaf area index and fraction 

of absorbed photosynthetically active radiation from Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Common Land Model. J. Geophys. Res. 109, D01103. 

https://doi.org/10.1029/2003JD003777 

USDA Foreign Agricultural Service (December 2018) World Agricultural Production, 

Circular Ser WAP 12-18, pp. 17-24. 

Verma, M., Schimel, D., Evans, B., Frankenberg, C., Beringer, J., Drewry, D.T., Magney, T., 

Marang, I., Hutley, L., Moore, C., Eldering, A., 2017. Effect of environmental conditions 

on the relationship between solar-induced fluorescence and gross primary productivity at 



 56 

an OzFlux grassland site. J. Geophys. Res. Biogeosciences 122, 716–733. 

https://doi.org/10.1002/2016JG003580 

Verrelst, J., Rivera, J.P., van der Tol, C., Magnani, F., Mohammed, G., Moreno, J., 2015. 

Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving 

sun-induced fluorescence? Remote Sens. Environ. 166, 8–21. 

https://doi.org/10.1016/j.rse.2015.06.002 

Wang, C., Chen, J., Wu, J., Tang, Y., Shi, P., Black, T.A., Zhu, K., 2017. A snow-free 

vegetation index for improved monitoring of vegetation spring green-up date in 

deciduous ecosystems. Remote Sens. Environ. 196, 1–12. 

https://doi.org/10.1016/j.rse.2017.04.031 

Wood, J.D., Griffis, T.J., Baker, J.M., Frankenberg, C., Verma, M., Yuen, K., 2017. Multiscale 

analyses of solar-induced fluorescence and gross primary production. Geophys. Res. Lett. 

44, 533–541. https://doi.org/10.1002/2016GL070775 

Xu, S., Liu, Z., Zhao, L., Zhao, H., Ren, S., 2018. Diurnal response of sun-induced 

fluorescence and PRI to water stress in maize using a near-surface remote sensing 

platform. Remote Sens. 10, 1510. https://doi.org/10.3390/rs10101510 

Yan, K., Park, T., Yan, G., Liu, Z., Yang, B., Chen, C., Nemani, R.R., Knyazikhin, Y., Myneni, 

R.B., 2016. Evaluation of MODIS LAI / FPAR Product Collection 6 . Part 2 : Validation 

and Intercomparison. Remote Sens. 8, 460. https://doi.org/10.3390/rs8060460 

Yang, H., Yang, X., Zhang, Y., Heskel, M.A., Lu, X., Munger, J.W., Sun, S., Tang, J., 2017. 

Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to 

canopy in a temperate forest. Glob. Chang. Biol. 23, 2874–2886. 

https://doi.org/10.1111/gcb.13590 

Yang, K., Ryu, Y., Dechant, B., Berry, J.A., Hwang, Y., Jiang, C., Kang, M., Kim, J., Kimm, 

H., Kornfeld, A., Yang, X., 2018. Sun-induced chlorophyll fluorescence is more strongly 

related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. 

Remote Sens. Environ. 216, 658–673. https://doi.org/10.1016/j.rse.2018.07.008 

Yang, P., van der Tol, C., 2018. Linking canopy scattering of far-red sun-induced chlorophyll 

fluorescence with reflectance. Remote Sens. Environ. 209, 456–467. 

https://doi.org/10.1016/j.rse.2018.02.029 



 57 

Yang, X., Tang, J., Mustard, J.F., Lee, J., Rossini, M., 2015. Solar-induced chlorophyll 

fluorescence correlates with canopy photosynthesis on diurnal and seasonal scales in a 

temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987. 

https://doi.org/10.1002/2015GL063201 

Yoshida, Y., Joiner, J., Tucker, C., Berry, J., Lee, J.E., Walker, G., Reichle, R., Koster, R., 

Lyapustin, A., Wang, Y., 2015. The 2010 Russian drought impact on satellite 

measurements of solar-induced chlorophyll fluorescence: Insights from modeling and 

comparisons with parameters derived from satellite reflectances. Remote Sens. Environ. 

166, 163–177. https://doi.org/10.1016/j.rse.2015.06.008 

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., Berry, J.A., 2019. Apratical approach 

for estimation the escape ratio of near-infrared solar-induced chlorophyll fluorescence. 

Remote Sens. Environ. 232, 111209. https://doi.org/10.1016/j.rse.2019.05.028 

Zhang, Y., Guanter, L., Berry, J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., Voigt, 

M., Köhler, P., 2014. Estimation of vegetation photosynthetic capacity from space-based 

measurements of chlorophyll fluorescence for terrestrial biosphere models. Glob. Chang. 

Biol. 20, 3727–3742. https://doi.org/10.1111/gcb.12664 

Zhang, Y., Guanter, L., Berry, J.A., van der Tol, C., Yang, X., Tang, J., Zhang, F., 2016. 

Model-based analysis of the relationship between sun-induced chlorophyll fluorescence 

and gross primary production for remote sensing applications. Remote Sens. Environ. 

187, 145–155. https://doi.org/10.1016/j.rse.2016.10.016 

Zhang, Y., Joiner, J., Alemohammad, S.H., Zhou, S., Gentine, P., 2018. A global spatially 

Continuous Solar Induced Fluorescence (CSIF) dataset using neural networks. 

Biogeosciences 15, 5779–5800. https://doi.org/10.5194/bg-15-5779-2018 

Zhang, Z., Zhang, Y., Joiner, J., Migliavacca, M., 2018. Angle matters : Bidirectional effects 

impact the slope of relationship between gross primary productivity and sun‐induced 

chlorophyll fluorescence from Orbiting Carbon Observatory‐2 across biomes. Global 

Biogeochem. Cycles 24, 5017–5020. https://doi.org/10.1111/gcb.14427 

Zuromski, L.M., Bowling, D.R., Köhler, P., Frankenberg, C., Goulden, M.L., Blanken, P.D., 

Lin, J.C., 2018. Solar-Induced Fluorescence Detects Interannual Variation in Gross 

Primary Production of Coniferous Forests in the Western United States. Geophys. Res. 



 58 

Lett. 45, 7184–7193. https://doi.org/10.1029/2018GL077906 

 

Glossary: 

SIF: solar-induced chlorophyll fluorescence 

SIFinst: instantaneous solar-induced chlorophyll fluorescence  

SIFpar: SIFinst normalized by PAR 

SIFyield apparent: apparent canopy SIF yield, defined as SIF observed in the direction of the sensor 

per PAR absorbed by canopies, is a product of fluorescence yield and the escaping ratio.  

ΦF: fluorescence yield 

f
esc

: the escaping ratio, which can be calculated as NIRv/fPAR  

GPP: gross primary production 

LUE: light use efficiency of GPP 

PAR: photosynthetically active radiation 

fPAR: the fraction of absorbed photosynthetically active radiation 

APAR: absorbed photosynthetically active radiation 

NIRv: the near-infrared reflectance of vegetation, which can be calculated as NDVI*NIR 

NIR: the reflectance of near-infrared band 

NDVI: normalized difference vegetation index 

LAI: leaf area index 

LAD: leaf angle distribution  
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Highlights 

●    SIFyield apparent is interpreted using high spatial resolution satellite footprints. 

●    Different spatio-temporal patterns of SIFyield apparent are revealed among vegetation types. 

●    SIFyield apparent of croplands is larger than non-croplands in summer. 

●    Escaping ratio largely explains the variations of SIFyield apparent in the Midwest. 

●    Spatial variability of SIFyield apparent is correlated to precipitation. 




