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Abstract:
Solar-induced chlorophyll fluorescence (SIF) measured from space has been increasingly
used to quantify plant photosynthesis at regional and global scales. Apparent canopy SIF yield

fESC

(SIFyield apparent), determined by fluorescence yield (®r) and escaping ratio (f~°), together with
absorbed photosynthetically active radiation (APAR), is crucial in driving spatio-temporal
variability of SIF. While strong linkages between SIFyieid apparent @nd plant physiological
responses and canopy structure have been suggested, spatio-temporal variability of SIFyieq
apparent at regional scale remains largely unclear, which limits our understanding of the
spatio-temporal variability of SIF and its relationship with photosynthesis. In this study, we
utilized recent SIF data with high spatial resolution from two satellite instruments, OCO-2
and TROPOMI, together with multiple other datasets. We estimated SIFyieiq apparent 8Cross
space, time, and different vegetation types in the U.S. Midwest during crop growing season
(May to September) from 2015-2018. We found that SIFyieid apparent OF Croplands was larger
than non-croplands during peak season (July-August). However, SIFyieid apparent DEtWEEN COIN
(C4 crop) and soybean (C3 crop) did not show a significant difference. SIFyieid apparent OF COIN,
soybean, forest, and grass/pasture show clear seasonal and spatial patterns. The spatial
variability of precipitation during the growing season could explain the overall spatial pattern
of SIFyield apparent. Further analysis by decomposing SIFyieiq apparent into ®¢ and ¢ using

near-infrared reflectance of vegetation (NIRy) suggests that f**° may be the major driver of the

ObSEI‘VEd Va“ablllty Of SIFyie|d apparent.

Keywords: solar-induced chlorophyll fluorescence, OCO-2, TROPOMI, fluorescence vyield,

croplands, NIRy, escaping ratio



1. Introduction

Accurate and timely estimation of ecosystem photosynthesis measured as gross primary
production (GPP) is crucial for understanding carbon exchange between the biosphere and
atmosphere (Beer et al., 2010). GPP also largely determines vegetation net primary
productivity and crop yield (Guan et al., 2016; Guanter et al., 2014). Satellite measurements
of solar-induced chlorophyll fluorescence (SIF) are increasingly used to approximate GPP
variability across large spatial and temporal scales (Frankenberg et al., 2011; Guan et al.,
2016; Joiner et al., 2011; MacBean et al., 2018; Shiga et al., 2018). A number of studies have
shown either linear or nonlinear relationships between GPP and canopy SIF at different
spatial and temporal scales and from various sensors (Li et al., 2018a; Smith et al., 2018;
Verma et al., 2017; Zuromski et al., 2018; Damm et al., 2015; Zhang et al., 2016). However,
fundamental controls of large-scale variabilities in SIF remain unclear.

The widely-used light use efficiency (LUE)-based GPP model (Monteith, 1972) can be
adapted to express SIF at the top of canopy (Guanter et al., 2014):
GPP = PAR x fPAR x LUE = APAR x LUE (1)
and
SIF = PAR X fPAR X SIFypparent yiela

= APAR X SIFypparent yieta = APAR X ®p X fo5¢ (2)
where PAR is photosynthetically active radiation, fPAR is the fraction of absorbed
photosynthetically active radiation, APAR is absorbed PAR and LUE is light use efficiency at

which APAR is used in photosynthesis. Apparent canopy SIF yield (SIFyieid apparent) Can be



defined as SIF observed in the direction of the sensor per PAR absorbed by canopies. SIFyeiq
apparent 18 jointly determined by fluorescence yield () and escaping ratio (f*, Liu et al., 2018;
Yang and van der Tol, 2018; Zeng et al., 2019; Du et al., 2017). Empirical studies have
reported correlations between LUE and SIFyieiq apparent (Yang et al., 2017; Yang et al., 2015),
and linkage between SIFyieiq apparent and plant physiological response (Song et al, 2018). Based
on Equation 2, both APAR and SIFyieiq apparent CONtribute to overall SIF variability. Although
some studies find a strong dominance of APAR in SIF (e.g. Miao et al., 2018; Yang et al.,
2018), SIFyieid apparent Variation is what distinguishes SIF from APAR. Significant efforts have
been made to derive PAR and fPAR from satellite remote sensing and ground-based
observations (Ryu et al., 2018; Tian, 2004), yet characterization and understanding of SIFyieiq
apparent Ff€Main much less studied. Existing studies have shown that SIFyieig apparent €N vary with
vegetation type, plant age, growth stage, and growth conditions (Colombo et al., 2018; Miao
et al.,, 2018; Sun et al, 2015). Additionally, there are indications of considerable
spatio-temporal variations of SIFyieid apparent (JOINEr et al., 2011; Li et al., 2018b). However,
understanding of SIFyieid apparent Variability over large spatial and temporal scales is insufficient,
and the knowledge gap in SIFyield apparent OVEr spatio-temporal scales is an outstanding source
of uncertainty that limits our current understanding of SIF variability.

Various satellite-based SIF sensors have emerged in the past decade and derived SIF
products have progressed from coarse resolutions in space and time to finer resolution. The
first global SIF product from Greenhouse Gases Observing Satellite (GOSAT, Frankenberg et
al., 2011; Guanter et al., 2012; Joiner et al., 2011), and the subsequent products from Global

Ozone Monitoring Experiment-2 (GOME-2, Joiner et al., 2013; Kohler et al., 2015) and



SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY,
Joiner et al., 2012; Kohler et al., 2015) provide an important opportunity to evaluate SIFyieiq
apparent OVEr large spatio-temporal scales (Joiner et al., 2011). However, due to coarse
resolutions of those SIF products (0.5° or coarser for gridded data) and associated intra-pixel
mixing effects, the accuracy of SIFyieid apparent €Stimation at the vegetation-type level is limited.
Launched on July 2, 2014, Orbiting Carbon Observatory-2 (OCO-2) retrieves SIF at a
significantly improved spatial resolution compared with previous SIF products, though the
spatial coverage is sparse (Frankenberg et al., 2014). The spatial resolution of an OCO-2
footprint is approximately 1.3x2.25 km?. Recent studies have compared and validated OCO-2
SIF products with GPP measurements from eddy covariance (EC) flux towers, given the
comparable spatial footprints between GPP and SIF measurements (Li et al., 2018c; Lu et al.,
2018). Additionally, a new SIF product based on TROPOspheric Monitoring Instrument
(TROPOMI) was released in 2018 (Kohler et al., 2018). TROPOMI measures SIF at both
high spatial resolution and high temporal frequency, with a footprint of 3.5x7 km? at nadir
and almost daily coverage. The two high-spatial-resolution SIF datasets, OCO-2 and
TROPOMI, have the potential to provide more accurate assessments Of SIFyieiq apparent fOr
specific vegetation types.

The U.S. Midwest Corn Belt currently produces more than 30% of global corn and
soybean (USDA, 2018), and has been identified as a global SIF hotspot during the boreal
summer (Guanter et al., 2014). Therefore, a better understanding of the controls on SIF would
likely lead to a better quantification of regional carbon budgets and improved prediction of

crop productivity (Guan et al., 2016). To understand controls of SIF variations, estimating



SIFyield apparent fOr each vegetation type is necessary because SIFyielq apparent Can vary
substantially between different vegetation types in this area. First, the SlIFyieiq apparent OF
croplands is likely larger than that of non-croplands since SIF in the U.S. Corn Belt is
remarkably high during crop growing season (Guanter et al., 2014). Second, within croplands,
the GPP of corn is usually much larger than that of soybean (Joo et al., 2016; Suyker and
Verma, 2012). This difference in photosynthesis could be attributed to canopy structure, for
example, leaf area index (LAI) and leaf angle distribution (LAD), and plant physiology, both
of which could potentially drive differences in SIFyieid apparent (Frankenberg and Berry, 2018;
Porcar-Castell et al., 2014). However, whether and how SIFyieid apparent OF COrn and soybean
differ is still not well studied. Finally, the non-crop vegetation types of forest and
grass/pasture, for example, are also different in both physiological processes and canopy
structures.

This study aims to provide a comprehensive analysis of the spatio-temporal variability of
SIFyield apparent OF Vegetation in the U.S. Midwest. The two newest satellite SIF datasets, i.e.
OCO-2 and TROPOMI footprint SIF observations, are used to provide a more accurate
estimation of SIFyieiq apparent OF Specific vegetation types. Specifically, we aim to address the
following questions: How does SlIFyied apparent Of croplands differ from SIFyieid apparent OF
non-croplands during crop growing season? How does SIFyieiq apparent OF cOrn (C4 crop) differ
from SIFyieid apparent OF SOybean (C3 crop)? What are seasonal and spatial patterns of SIFyieiq
apparent OF the four major vegetation types? What drives variability of SIFyieiq apparent In SPace, time,

and across vegetation types?

2. Data and Methodology



2.1 Study region

The study region spans 15 states in the U.S. Midwest region (Fig. 1) including North
Dakota, South Dakota, Nebraska, Kansas, Minnesota, lowa, Missouri, Wisconsin, Illinois,
Michigan, Indiana, Ohio, Kentucky, Wyoming (East to 107 °W), and Colorado (East to
107 °W). Corn and soybean are the major crop types in this area. In addition to crops, forest and
grass/pasture are also dominant vegetation types in the U.S. Midwest. Forests are mainly
distributed in the northeast, southeast, and west of the study area and grass/pasture is mainly
distributed in the west (Fig. 1). Most forests are temperate deciduous, except for Ponderosa
Pine in the west and Spruce/Fir in the north. In this study, we focused on the four main

vegetation types: corn, soybean, forest, and grass/pasture.

2.2 Satellite SIF footprint data



We primarily used the OCO-2 SIF Lite product (v. B8100r), which contains



bias-corrected SIF and other related fields for individual footprints on a daily basis (Sun et al.,

10



2018). The data were obtained from (ftp://fluo.gps.caltech.edu/data/OCO2/sif_lite_B8100/).

11



The OCO-2 spectrometer measures high-resolution spectra in O,-A band (757-775 nm, full

12



width at half maximum = 0.042 nm) with a local overpass time at about 1:30 pm, which was

13



utilized for OCO-2 SIF retrievals at 757 nm (SIF757) and 771 nm (SIF771) based on in-filling

14
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Fig. 1 Main vegetation types (i.e. corn, soybean, grass/pasture, and forest) in the U.S.

Midwest, derived from Cropland Data Layer of 2015 for illustration.

of solar Fraunhofer lines (Frankenberg et al., 2014). SIF values used here were calculated as
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(SIF757+1.5xSIF771)/2 because SIF771 is typically ~1.5 times lower than SIF757 (Sun et al.,

2018). The nominal spatial resolution of a footprint is 1.3x2.25 km?, with eight footprints

16



along-track covering a 10.6 km-wide swath and a repeat cycle of approximately 16 days. SIF

observations depend on viewing geometry (Z. Zhang et al., 2018) which for OCO-2 alternates

17



mainly between nadir mode and glint mode. We only used measurements from nadir mode

because of slightly higher spatial resolution, a better signal-to-noise ratio over land and more

18



useful soundings in regions impacted by clouds and topography (Sun et al., 2018). We used

only data during the crop growing season (May - September) from 2015 to 2018. Fig. 2a and 2b

19



show a summary of the spatial and temporal coverage of OCO-2 footprints used in the study.

The footprints were distributed along separated tracks with high data density in the west; fewer

20



data were available in August and September in 2017.

In addition to OCO-2, we also used the latest released TROPOMI SIF footprint data

May Jun. Jul. Aug. Sep.

6000
4000
2000

48°N |

45°N 4000

2000

42°N |

4000
2000

Number of footprints
o

39°N
4000
2000

36°N : § . |
105°W  100°W  95°W  90°W  85°W 120 151 181 212 243 273
; : . . @ Day of year
ik _ TROPOMI| £
¢ ] o
B 15000 d%ﬁ\é, Jun. _ Jul _ Aug. _ Sep.
o . '
10000 :
45N © 5000
[
Qo 0
E 120 151 181 212 243 273
42N z Day of year

e Sample footprints: OCO-2(black) , TROPOMI(red)

20180710 20180714 20180822

39°N

L. 1 : :

105°W  100°W  95°W 90°w  85°W
0 0.25 05 0.75 1
Density (Unitless)

36°N

Fig. 2 lllustration of availability of OCO-2 and TROPOMI footprint data in both space and
time. Panels (a) and (b) respectively represent the spatial coverage and frequency of
observations over time for OCO-2 data from 2015 to 2018. Panels (c) and (d) are the spatial
and temporal distributions of the number of the footprint of TROPOMI data in 2018. (e)
shows three examples of the footprint of OCO-2 and TROPOMI. The color background

shown in (a) and (c) represents the density of the footprint observations.
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(ftp://fluo.gps.caltech.edu/data/tropomi/). The TROPOMI onboard Sentinel 5 Precursor
satellite has a local overpass time at about 1:30 pm and a repeat cycle of 17 days, and
provides spectra measurements in the near-infrared band (band 6, 727-775 nm, full width at
half maximum = 0.38 nm), which makes SIF retrieval possible. A data-driven approach
similar to previous studies (Guanter et al., 2015; Koéhler et al., 2015) was employed to extract
the SIF signal using spectral measurements ranging from 743 nm to 758 nm (Kdohler et al.,
2018). The nominal spatial resolution of a TROPOMI footprint is 7 km along track and 3.5-15
km across track, with a wide swath width of approximately 2,600 km. This wide swath allows
almost daily global observations. We used available data from May to September in 2018 with
cloud cover less than 0.3 and view zenith angle less than 10 degrees. Fig. 2e shows some
examples of the selected TROPOMI footprints. Fig. 2c and 2d show a summary of the spatial
and temporal availability of the total TROPOMI footprint observations used in the current
studly.
2.3 Estimating SIFyieiq apparent, ®F and < at the satellite footprint level

In this section, we describe ancillary data and how we process these data to estimate
SIFyield apparents @r, and ¢ at the satellite footprint level. SIFyieid apparent at the satellite footprint
level is calculated according to Equation 2.

Estimating f*° and ®¢ over a large scale is challenging. In this study, we employed the

following equations according to a newly developed algorithm (Zeng et al, 2019):

NIR,

esc ~~
[ fPAR (3)
SIF
Pr  aRwNIR, )
NIR, = NIR x NDVI = NIR x LE-Red (5)
NIR+Red
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where NIRv is near-infrared reflectance of vegetation, NIR and Red are reflectances of
near-infrared and red bands. To calculate these variables, SIF data were obtained from OCO-2
and TROPOMI datasets as described in Section 2.2. Instantaneous PAR is the output product
from Ryu et al., (2018). An artificial neural network surrogate model (Ryu et al., 2018),
trained from a Monte Carlo ray-tracing model (Kobayashi and Iwabuchi, 2008) was used to
produce the product. The model was driven by MODIS cloud optical thickness (3 km
resolution), aerosol optical depth (1 km resolution), total water vapor (1 km resolution), total
ozone (5 km resolution), and shortwave albedo products (1 km resolution), as well as
GMTED2010 elevation product (1 km resolution). Detailed information about the model and
data processing can be found in Ryu et al. (2018). Four fPAR datasets were used to estimate
SIFyield apparent: MCD15A2H from MODIS (Myneni et al., 2002) and VNP15A2H from VIIRS
(Myneni and Knyazkhin 2018) are 8-day composite datasets with a spatial resolution of 500
m. PROBA-V GEOV1 fPAR data are delivered every 10 days with a spatial resolution of 300
m (Baret et al 2013). We calculated daily fPAR from the three temporal composited fPAR
datasets using a simple linear interpolation. MCD43A4 provides daily Nadir Bidirectional
Reflectance Distribution Function (BRDF)-Adjusted Reflectance data at a 500-meter
resolution which were used to calculate NDVI. A simple NDVI-fPAR model was employed to
generate the fourth fPAR estimation (Peng et al., 2012, Text S1). Only footprints with all the
four fPAR values larger than 0.1 were included. SIFyieiq apparent Was calculated independently
with the four fPAR estimations. The averaged SlFyieiq apparent from the four estimations was
finally used in the analysis. MCD43A4 was also used to calculate NIRy,.

2.4 Data analysis

23



We performed the following analysis to address the scientific questions raised in the
introduction section. First, to detect the difference of SIFyieiq apparent D€tWeen croplands (corn and
soybean) and non-croplands, we examined relationships between the land cover fraction of
croplands and SIFyieiq apparent at the satellite footprint level for both OCO-2 and TROPOM Iover
the entire study domain. The land cover fraction of different vegetation types was calculated
from the USDA NASS Cropland Data Layer (CDL) dataset. A linear regression analysis was
conducted for each month from May to September. The slope of the regression indicates a
difference of SIFyieiq apparent DEIWeEEN Croplands and non-croplands; a positive slope means that
SIFyield apparent OF Croplands is larger than that of non-croplands. We performed this analysis
rather than directly comparing pure croplands and non-croplands footprints because most
footprints contain mixed vegetation types.

Second, we selected cropland dominated footprints, defined as those footprints with a
fraction of croplands greater than 80%. We then examined relationships between corn fraction
of the total area in a footprint and SIFyieiq apparent t0 detect the difference of SIFyieiq apparent DEtWeEEN
corn and soybean. An increasing trend of SIFyieiq apparent With the increase of corn fraction
indicates that the SIFyieiq apparent Of COrn is larger than soybean. The analysis was performed over
the entire study area and also over three small sub-regions.

Spatial-temporal patterns of SlIFyieiq apparent OF different vegetation types were explored.
Both f*° and ®f can contribute to the spatial-temporal patterns and differences among
vegetation types. We collected SIFyieiq apparent OF OCO-2 footprints for which the fraction of a
specific vegetation type is larger than 80%. For TROPOMI data, the threshold value of the

fraction was set to 50% for corn and soybean because few footprints remained when the
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threshold value was set to 80%. The spatial patterns of SIFyieiq apparent Of different vegetation
types for each month were smoothed by averaging all available SIFyieig apparent Of the specific
vegetation type within a 0.5°x0.5° grid. Seasonal patterns of SIFyieid apparent Were examined. The
study area was divided into three sub-regions for each vegetation type according to spatial
distributions of the footprints, and temporal dynamics of monthly mean SIFyieid apparent Were
plotted for the three sub-regions.

Variability of SIFyieig apparent COUld be driven by several potential factors. First, we
examined impacts of air temperature and precipitation on SIFyieiq apparent, D€Cause these climate
variables could affect SIFyieid apparent through either ¢ or @, We plotted SIFyieid apparent O €ach
vegetation type in each growing season month within a climate space built by a multi-year
average of monthly mean air temperature and monthly total precipitation. Mean air
temperature and total precipitation for May to September were calculated from monthly
PRISM Climate data with a spatial resolution of 4 km from 2015 to 2018
(http://prism.oregonstate.edu/, Daly et al., 2008). Second, we examined differences in SIFyieiq
apparent DEtWeEEN grass and pasture, and among different forest types which could also arise
from ¢ and ®r. The USGS National Land Cover Database (NLCD) in 2016 was used to
identify grass (Grassland/Herbaceous in NLCD land cover classification) and pasture
(Pasture/Hay in NLCD land cover classification, Homer, 2015). Forest types were identified
according to the Conus Forest Group dataset downloaded from USDA Forest Service
(https://data.fs.usda.gov/geodata/rastergateway/forest_type/). This dataset is created by the
USFS Forest Inventory and Analysis program and the Remote Sensing Application Center.

Third, the start of the growing season (SOS) of the four vegetation types was examined based
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on the Normalized Difference Phenology Index (Wang et al., 2017, Text S2). Finally,
variabilities of *° and ®¢ can help explain the variabilities of SIFyieiq apparent. WWe €xamined the
differences of f*° and ®r between croplands and non-croplands, and between corn and
soybean. We also explored the spatial and temporal patterns of f**° and ®r. The same analysis

as for SIFyieid apparent Was conducted.

3. Results
3.1 Difference of SIFyieid apparent DEtween croplands and non-croplands

The relationship between OCO-2 SIFyieiq apparent and cropland fraction in different growing
months from 2015 to 2018 (Fig. 3) showed a clear seasonal pattern. In May, SIFyieiq apparent
decreased with the cropland fraction, implying that SIFyieid apparent OF Croplands was lower than
non-croplands in the early growing season. In July and August, SIFyield apparent ShOwed an
increasing trend with the increase of the cropland fraction (all statistically significant with
P<0.001). These results indicated that during the peak growing season, cropland SIFyieiq apparent

was higher than non-cropland SIFyieiq apparent.
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Since we have SIF footprint observations from TROPOMI in 2018, we applied the same
analysis as above (Fig. S1). Generally, the results from TROPOMI observations were similar to
those from OCO-2 observations, despite the different magnitudes of the slopes between SIFyieiq
apparent @nd the cropland fraction. We further conducted the same analysis for SIFins
(instantaneous SIF) and SIFp, (SIF normalized by PAR, Fig. S2). The difference between

croplands and non-croplands in SIFis: and SIFys showed a similar seasonal pattern to that of

Sl I:yield apparent.
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Fig. 3 Relationship between SIFyieiq apparent Calculated from OCO-2 SIF and the fraction of
croplands (corn and soybean). The linear fits and the equations are shown when the
regression is significant (p<0.001). Only footprints with a cropland fraction larger than 10%

are included.

27



T T
a
48°N [ -
Entire area
|
I
Northern
45°N .
L - — L - -
42°N [ 1
39°N [
360N | | 1 )I F{ 1
105°W 100°W 95°W 90°W 85°W
5 «10* May Jun. Jul. Aug. Sep. 1
@©
o 15
©
o 10 - - ".’l
5 s .
0 y=0.00017x+0.00107 | y=0.00031x+0.00055 0.8
-4
@ _ 2010 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1
5% 15
€&
T o, -
L - Sk .
% 5 HKa % ’ 06 &
zo K aXes 2
e 0 y=0.00012x+0.00088 ZF
=B
4 0. 1 0.5 1 0. 1 } 1 0. 1 <
2 g X10 0.5 0 0 5 0 0.5 0 5 S
© T =
o £15 2
5 5, | - o4&
$ s ~. -
° 25 ,
sSu d
» 0 y=0.00036x+0.00062
«104 05 10 0.5 10 0.5 10 0.5 10 0.5 1
20
g 40.2
£ -
Q g :
2 s A = .
w 0 y=0.00033x+0.00046 | | |
0 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1
Corn fraction Corn fraction Corn fraction Corn fraction Corn fraction

Fig. 4 Relationship between SIFyieig apparent @nd the fraction of the OCO-2 footprint covered
by corn. The upper panel illustrates the three regions that are labeled in the bottom panel.
The linear fits and the equations in the bottom panel are shown only when the regression is
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3.2 Difference of SIFyieid apparent Detween Corn (C4) and Soybean (C3)

The relationship between OCO-2 SlFyielq apparent @nd corn  fraction for the
cropland-dominated footprints during different growing season months from 2015 to 2018 for
different regions (Fig. 4) generally showed a weak linear relationship between SIFyieiq apparent
and corn fraction, implying that SIFyieid apparent Of COrn was similar to that of soybean. For the
entire study domain, the relationship between SlIFyieid apparent and corn fraction was positively
significant (P<0.001) in August and September but was not significant in the other three
months. We also performed a linear regression between SIFyieiq apparent @nd corn fraction in
three sub-regions (northern area, middle area, and eastern area) and in five growing season
months respectively, with a total of 15 cases (Fig. 4). The relationship was significant
(P<0.001) only in three out of the 15 cases: the northern area in July, the middle area in
September, and the eastern area in September. Compared with SIFyieiq apparent, the difference of
SIFinst and SIFya between corn and soybean appeared to be similar (Fig. S3-S4). SIFins and
SIFgar Of corn were significantly larger than soybean from June to September for the entire
area. However, this difference was weak when the analysis was restricted to a small

sub-region, with the exception of SIF;. in the northern area.

3.3 Spatial and temporal patterns of SIFyieid apparent

3.3.1 Spatial pattern and potential drivers of SIFyieid apparent
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Fig. 5 Spatial distributions of SIFyicid apparent OF cOrn, soybean, forest, and grassland
calculated from the OCO-2 data. The average of all the available SIFyiciq apparent Values within

a 0.5°x0.5° grid was assigned to all the footprints within the grid.

SIFyield apparent OF cOrn and soybean calculated from the OCO-2 footprint data showed clear
spatial patterns (Fig. 5). In May and June, the spatial difference of SIFyicig apparent Was low for
both corn and soybean because it is the beginning of the growing season for those crops (Fig.
S5). From July to August, SIFyieid apparent OF cOrn in the central Corn Belt (lowa, Illinois, and
Indiana) was higher than SIFyiciq apparent OF COrn in the northern and the western parts of the Corn
Belt. SIFyicid apparent OF SOybean showed a similar pattern to corn, despite there were fewer
available observations defined as the fraction of soybean >80% of the footprint in the west.

This spatial pattern of SIFyieiq apparent fOr both corn and soybean can be partly explained by

precipitation (Fig. 6). During the peak growing season, SIFyieiq apparent Was, in general, higher in
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areas with higher precipitation. SIFyieiq apparent I July was significantly (P<0.01) correlated with
precipitation when the temperature was fixed to a small range. The response of SIFyieid apparent tO
temperature was not clear. The linear correlation between SIFyieiq apparent in July and temperature
was not significant when precipitation was fixed to a small range. In September, except for a
small region in the central Corn Belt with high values of SIFyieid apparent OF cOrn, SIFyieiq apparent OF
the two crop types started to decrease, possibly because both crops matured.

Spatial patterns of SIFyieiq apparent OF fOrest and grass/pasture differed from those of corn and
soybean (Fig. 5). In general, Forest SIFyieiq apparent IN the west was much lower than in other
regions during the growing season. Forest SIFyieid apparent IN the northeast and southeast were
comparable. Two factors could potentially account for the observed spatial patterns. First, high
SIFyield apparent Was associated with high temperature and precipitation (Fig. 6). Second, the
spatial distribution of the forest types and the differences of SIFyieid apparent @amONg these types
could explained the spatial pattern of SIFyieid apparent. Among all forest types, SIFyieiq apparent O the
dominant forest type in the west (Ponderosa Pine) was the lowest, and SIFyieid apparent OF the
dominant forest type in the southeast (Oak/Hickory) was the highest (Fig. 7). In addition to
the general spatial pattern, a decreasing pattern of SlFyieiq apparent from the southeast to the
northeast was observed in May. A potential explanation for this observation is that the SOS of
forest in the northeast was in early May or late April, whereas the SOS of forest in the

southeast was in March or April (Fig. S5).
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shown only when the regression is significant (p<0.01).
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Fig. 7 Boxplots of SIFyieiq apparent OF grass, pasture and different forest types for different

months. Shaded areas are forest types. SIFyieiq apparent Was calculated from OCO-2 footprint

data from 2015 to 2018.

The spatial pattern of SlIFyieiq apparent IN grass/pasture demonstrated a clear gradient of

increase from west to east. This pattern was consistent across different growing months.
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Grass/pasture is mainly distributed in the western part of the U.S. Midwest. SIFyieid apparent OF
grass/pasture appeared to be lower than other vegetation types, which may also contribute to a
lower spatial variability. Similar to the forest, the spatial variability could potentially be
explained by two factors. First, SIFyieiq apparent OF pasture was higher than that of grassland
while pasture was mainly distributed in the east and grassland was distributed in the west.
However, this may only account for a small portion of the spatial pattern of SIFyieid apparent,
because the number of footprints in pasture areas was limited. Second, high S1Fyieid apparent Was
observed in the wet-warm region (Fig. 6), implying the impact of meteorological factors on
SIFyield apparent. SIFyield apparent N July was positively correlated with temperature (or
precipitation) after fixing precipitation (or temperature, Fig. 6).

To further corroborate our findings, we examined the spatial pattern of SIFyieid apparent fOr
the four vegetation types in 2018 using TROPOMI footprint data, as Fig. S6. Compared with
the results from OCO-2, the spatial pattern of SIFyieid apparent OF corn from TROPOMI showed
high values in eastern Nebraska, southern lowa, and Illinois in June. For soybean, SIFyjeq
apparent Was high in the southern region. Despite these slight differences, results from the two
datasets were similar. We also explored spatial patterns of SIFy, and SIFisand found similar
spatial patterns to SIFyieiq apparent (Fig. S7-S8).

3.3.2 Temporal (Seasonal) pattern of SIFyieiq apparent
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SIFyield apparent OF cOrn, soybean, grass/pasture, and forest had different temporal
variabilities from May to September (Fig. 8). Seasonal patterns of SIFyieid apparent OF COrn and
soybean showed a ‘bell’ shape. SIFyield apparent OF COrn and soybean increased from May onward,

reaching the highest values in July or August, before decreasing to a lower value in September
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when crops began to senesce. Despite differences in the magnitude of SIFyieid apparent, this
seasonal pattern was consistent across different sub-regions.

For grass/pasture, the seasonal pattern of SlIFyieq apparent In the west was remarkably
different from that in the east (Fig. 8). SIFyieid apparent iN the west showed a slightly decreasing
trend from May to September, while in the east, SIFyieq apparent decreased from May to
September with a higher magnitude of SIFyieiq apparent during the growing season. Notably, there
was a rapid decrease in SIFyieiq apparent from May to June. This may indicate that the seasonal
pattern of SIFyieiq apparent OF grass, which dominates in the west, differs from that of pasture,
which dominates in the east (Fig. 7).

For forest distributed in different sub-regions, there was a lack of a universal temporal
pattern, possibly due to the different dominant forest types in these sub-regions (Fig. 7). In the
west, SIFyieiq apparent OF fOrest started increasing in May, peaked in July and then decreased until
September. In the southeast, SIFyieid apparent ShOWed a decreasing trend from May to September.
In the northeast, SIFyieiq apparent OF the forest showed a very large increase from May to June.
possibly because the growing season of the forests in this area starts in May after which time
SIFyield apparent dleCreases until September.

We further examined seasonal patterns of SIFyieid apparent derived from TROPOMI in 2018
(Fig S9.). As expected, the monthly dynamics of SIFyieid apparent from May to September
derived from the two satellite observations were similar, except for grass/pasture in the east
where SIFyieid apparent from TROPOMI did not show a clear decreasing trend from May to
September as OCO-2. In addition, the seasonal patterns of SIFp, and SlFins Were similar to

thOSG Of SIFy|e|d apparent (Flg. 810'811).
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3.4 Variability of f*° and ®r
The density plots showing the relationships between @ or f*° and croplands fraction (Fig.

S12) suggested that both @ and f*° contributed to the observed difference of SIFyieid apparent

fesc

between croplands and non-croplands. had a strong linear relationship with crop fraction

during different growing months, while the relationship between ®¢ and crop fraction was

fESC

relatively weak compared with the relationship between and crop fraction. The seasonal

fesc

dynamics of the slope between " and crop fraction were similar to those observed between

fesc

SIFyield apparent and crop fraction. These results imply that may dominate the observed

differences in SIFyieiq apparent DEtWeeN croplands and non-croplands.

Differences of ®g or *°

between corn and soybean can be detected during some months
(Fig. S13-S14), although SIFyieig apparent Of COrn and soybean were not significantly different
across the three sub-regions (Fig 5). For example, in August, the ® of corn was larger than that
of soybean, while the **° of corn was smaller than that of soybean in the three sub-regions or
over the whole study domain. In September, corn f*¢ was significantly lower than soybean f*
while the ®¢ of corn was larger than that of soybean in the east and middle sub-regions or over
the whole domain.

fE‘SC

Fig. S15 and Fig S16 showed spatial patterns of **°and ®g The spatial pattern of f**° was
similar to that of SIFyieiq apparent. ON the other hand, the spatial pattern of ®r contained more noise.
No clear spatial pattern was found except that @ of grass/pasture increased from the west to the
east, which matched with the pattern of SIFyieiq apparent. Fig. 9 showed the seasonal patterns of @

fESC

and . ®¢ generally remained stable during the growing season for all the four vegetation
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fE‘SC

types except for the increase from May to June for croplands. Conversely, > showed a strong

seasonal variability which was similar to that of SIFyieiq apparent.

4. Discussion
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4.1 Variability of SIFyieid apparent

Our study shows that SIFyieq apparent Of croplands is significantly larger than
non-croplands during the peak growing season in the U.S. Midwest (July-August). This result
Is consistent with the spatial pattern of SIF during the same period in the U.S. Midwest
observed in previous research which reveals much higher SIF values in the Corn Belt than in
the surrounding regions (Guanter et al., 2014; Gentine and Alemohammad 2018; Joiner et al.,
2013). The higher SIF of croplands compared with non-croplands is also supported by the
OCO-2 footprint SIF data used in this study (Fig. S3). Our analysis of SIFyieiq apparent
demonstrates that the differences in SIFyieid apparent DEIWeEEN Croplands and non-croplands could
partly contribute to the remarkably high SIF of the U.S. Corn Belt. APAR also contributes to
the high SIF (Fig. S17) but is less important than SIFyieiq apparent. Because the ratio of croplands
SIFyield apparent 10 NON-croplands SIFyieiq apparent IN peak season, which can be roughly estimated
from equations in Fig. 3 when crop fraction is set as 1 and 0, is much higher than that of
APAR (Fig. S17).

The difference in SIFyieiq apparent DEtween the C4 (corn) and C3 (soybean) crops is small
(Fig. 4). In August and September, the ®r of corn is larger than soybean, while the f**° of corn
shows the opposite patterns which potentially explain the similar SIFyieid apparent OF COrn and
soybean in the two months (Fig. S13 and S14). For some other months, the similarities in f**°
could possibly explain the similar patterns in SlIFyieiq apparent given the small variation and
differences in ®r. Wood et al., (2017) examined OCO-2 footprint SIF retrievals in lowa and
southern Minnesota and found a similar magnitude of fluorescence (Fs, SIF normalized by the

cosine of the solar zenith angle) from corn and soybean canopies. It is noteworthy that we
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also do not find any significant difference in SIFp, (SIF normalized by PAR) between corn
and soybean in a similar region (middle area in Fig. 5). Here SIF, is a similar concept to F
because the cosine of the solar zenith angle is a good proxy of PAR. However, when we focus
on the whole Midwest region, both SIFins; and SIF, of corn are larger than the counterparts of
soybean during the peak season probably because of the different spatial distribution between
corn and soybean.

We present different spatial patterns of SIFyieiq apparent Of different vegetation types using
satellite footprint data. Previous studies have investigated spatial patterns of SIFyieiq apparent at
regional or global scales (Joiner et al., 2011; Li et al., 2018b; Song et al., 2018) using
coarse-spatial-resolution SIF products. Our study confirms that meteorological variables (e.g.
precipitation and temperature) play roles in determining SIFyieiq apparent Within certain vegetation
types. In general, more precipitation leads to higher SIFyieiq apparent fOr all the vegetation types,
while the correlation between temperature and SIFyieiq apparent 1S Weak. Considering that some
croplands are irrigated and precipitation might not directly affect the observed SIF, we checked
the impact of VPD (Fig. S18) on SIFyieid apparent @nd found negative correlations between VPD
and SIFyieid apparent fOr most cases.

The seasonal patterns of corn and soybean SIFyieiq apparent from May to September generally
follow the growth cycle of crops in the U.S. Midwest. The ‘bell’ shape curve was also found for
wheat in northwest India and crops in western Russia during the growing season, based on the
GOME-2 gridded dataset (Song et al., 2018; Yoshida et al., 2015). However, we did not
observe this bell shape of SIFyieiq apparent fOr forest and grass/pasture ecosystems, which is a

departure from prior studies (Yoshida et al., 2015). By extending the growing season to include
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April and October, we found that SIFyieiq apparent O fOrest and grass/pasture increased during the
start of the growing season except for grass in the west and decreased during the end of the
growing season, although the amplitude of the shift of SIFyieid apparent Was not large (Fig. S19).
To confirm the results from satellite data, we also checked the seasonal pattern of SIFyieid apparent
using ground observations at two sites at Nebraska (Text S3). Fig. S20 showed that there was a
decreasing trend of SIFyieiq apparent from peak season to September for corn in 2017 and soybean
in 2018 which is consistent with the satellite observation. Currently, we cannot provide a more
detailed comparison because the ground data only cover the second half of the growing season
and there are not enough OCO-2 footprints that cover the field sites. The factors that we
observed to correlate with the spatial pattern of SlFyieiq apparent, SUCh as precipitation and
temperature, may influence the seasonal cycle of SIFyieiq apparent (L1 €t al., 2018b). We also
recognize that the seasonal cycle of plant growth usually resembles the seasonal cycle of
environmental factors, which makes it difficult to fully disentangle the influences of abiotic
factors (environmental factors) and physical factors (e.g. canopy structure, leaf optical property)

on Sl I:yield apparent-

4.2 Variabilities of **° and ®¢

The apparent canopy SIF yield is a product of f*° and ®¢. Our results suggest that ¢ may

be a major driver of the observed seasonal dynamic of SIFyieiq apparent- The seasonal pattern of ¢

is similar to that of SIFyieiq apparent TOr all the four vegetation types. We also notice that some

fESC

results are not as expected. For example, the seasonal pattern of of crops shows a large

fESC

increase from June to July. At first sight, we might expect that = should decrease with the
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rapid increase of LAI during the early growing season because the fraction of canopy gaps for
SIF to escape will decrease. However, for far-red SIF, previous studies based on the Soil
Canopy Observation, Photochemistry and Energy (SCOPE) model reported a contrary result
(Fournier et al., 2012; Du et al., 2017; Yang and Van der Tol, 2018). Escaping ratio increases
with LAI due to multiple scattering. LAD can also influence **. Some simulation analyses
show that escaping ratio with planophile or spherical LAD is much higher than that of
erectophile vegetation (Migliavacca et al., 2017; Zeng et al., 2019), and experimental data also
support this argument (Du et al., 2017). However, more field observations are needed to
address whether there is a shift of erectophile canopy to planophile canopy for crops during the
early season. Another possible cause of the observed pattern is the increasing canopy cover in

fESC

spring in driving the increasing = estimation. LAl and LAD could also be used to explain the

low value of ¢

of grassland in the west because the grass in arid and semi-arid regions usually
has low LAl and erectophile LAD (Diana et al., 2000; Holder et al., 2012). Compared to f*, the
monthly median value of ®r remains stable. However, the high variance of ®¢ within a month
implies that ® may play an important role at small time scales. With regard to the spatial
pattern, we find a clear spatial pattern of ¢, while the spatial pattern of ®¢ has more noise. A
probable explanation is that f*° is determined by the canopy structure and leaf optical properties,
which are stable during specific time periods, whereas @ reflects the physiology of vegetation
which can be influenced by more rapidly varying environmental conditions. Another simple
explanation is that the estimation of SIF contains more noise than the estimation of .

The impact of meteorological factors on SlIFyieiq apparent COUld be attributable at least in

fESC

part to both ¢ and ®. The spatial pattern of f*° can be influenced by meteorological factors.
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For example, the LAD of soybeans is controlled by leaf water potential, and under water
stress conditions, soybean leaves tend to be more vertical (Oosterhuis et al., 1985).
Additionally, plants in arid areas may have steeper leaf angles to reduce rainfall interception
by leaves and increase soil infiltration (Holder, 2012) or to minimize light interception and
leaf temperature which is usually in excess in those regions. Similarly, LAI of grass has been
reported to increase with precipitation (Diana et al., 2000), which could also change f*°. @
reflects the distribution of the absorbed energy, which is likely also sensitive to
meteorological conditions through the dynamics changes of non-photochemical quenching
(NPQ) and photochemical quenching (PQ) in relation to various plant abiotic stresses
(Cendrero-mateo et al., 2015; Frankenberg and Berry, 2018; Xu et al., 2018).
4.3 Uncertainties and Limitations

Quantifying f** and @ over large scales is a challenging but important task. A handful of
methods have been developed (Liu et al., 2018; Romero et al., 2018; Yang and van der Tol,
2018; Zeng et al., 2019). We adopt a method developed recently by Zeng et al. (2019), which
can be easily applied over large spatial scales. The approach is demonstrated to be effective by
simulation analysis using the SCOPE model and the Discrete Anisotropic Radiative Transfer
(DART) model. But some uncertainties are introduced during the application of the approach.
First, wavelengths of SIF (771nm and 757 nm for OCO-2, 740 nm for TROPOMI) are not
consistent with the MODIS NIR band (858 nm) which is used to calculate f*°. However, this
impact is small in practice, as assessed by Zeng et al., (2019). Second, the sun-canopy-sensor
geometry of SIF is different from that of MODIS. To minimize this effect, we only used OCO-2

observations taken in ‘nadir’ mode, TROPOMI data with view zenith angle less than 10
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degrees, and MODIS Nadir BRDF-Adjusted Reflectance data. The uncertainty caused by
sun-canopy-sensor geometry could also influence the seasonal pattern of SIFyieid apparent due to
the varying solar zenith angle for different seasons. Third, when vegetation cover is extremely
low, this approach can break down (Zeng et al., 2019). Although there are some potential
uncertainties in the analysis, it is an important step toward decomposing S1Fyieiq apparent into
and @, which represents a necessary advancement toward fully interpreting observed SIF
signals.

Accurate estimation of SIFyieiq apparent depends on reliable fPAR datasets. There are several
fPAR products available. These datasets are produced from measurements from different
instruments using different retrieval algorithms which potentially generate discrepancies
among fPAR datasets. For example, inter-comparisons with other fPAR products show that
there is an overestimation of the retrievals at low fPAR values in MODIS fPAR products (Yan
et al., 2016). In this study, we used four approaches to estimate fPAR. Fig. S21 showed the
standard deviation (SD) of SIFyieiq apparent Calculated from the four fPAR values. The results
demonstrated that the SD was much lower than the corresponding mean SIFyieid apparent (Fig. 5)
for most cases, while for corn and soybean in May, the SD could be higher. This is probably
because the relative uncertainties of all terms in SIFyieiq apparent and f*° are higher for low fPAR
values.

Although this study used state-of-the-art satellite-based SIF products, these SIF products
still have limitations. First, SIF is a weak signal consisting of 1%-5% of the total absorbed
energy (Frankenberg et al., 2018), and satellite-based SIF measurements still contain possibly

uncertainties. Sun et al., (2017) compared OCO-2 retrievals with airborne measurements of SIF
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with the Chlorophyll Fluorescence Imaging Spectrometer (CFIS) and found R? between
OCO-2 and CFIS SIF was 0.71. Second, OCO-2 footprint observations are discrete samples,
and they are not spatially and temporally continuous. We also used TROPOM I footprint data
which provides better spatial and temporal details due to the greatly improved spatio-temporal
coverage of the dataset compared with OCO-2. However, we found some areas with lower
valid data coverage, for example, soybean crops in lowa. This is probably because the spatial
resolution of TROPOMI is not fine enough to get enough pure footprints. The readers should be
aware that there is a consistent difference in the absolute value of SIF between OCO-2 and
TROPOMI because the wavelength of the two SIF retrievals is not the same. An alternative
method would be to use downscaled (Duveiller and Cescatti, 2016) or reconstructed (Gentine
and Alemohammad, 2018; Li and Xiao, 2019; Y. Zhang et al., 2018) gridded SIF data.
However, we purposely decided not to use any of these SIF products here, as these downscaled
or reconstructed data include assumptions that could skew our findings. Third, the temporal
frequency (monthly) in our analysis offers only a coarse view of seasonal patterns. Especially
during the period from May to June for crops and forests in the northeast when the plants start to
grow and the canopy structures and physiology status change rapidly. This could potentially be
solved with TROPOMI data with high temporal frequency in the future. New measurements
from the site level scale could provide more information. Finally, SIFyieid apparent Should be
wavelength dependent since both the emitted SIF spectrum and the reflectance at leaf level are
wavelength-dependent (Verrelst et al., 2015). However, the OCO-2 footprint dataset provides
SIF at 771 nm and 757 nm, while TROPOMI SIF is only available at 740 nm.

4.4 Contribution to understand SIF and the SIFyieig apparent: LUE relationship
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This study’s findings have many important implications. Most importantly, APAR and
SIFyield apparent JOINtly determine variability in SIF. APAR correlates more with plant structural
properties and pigment content, while SIFyieid apparent 1S likely to carry both canopy structure
and plant physiology signals. Leaf-level and canopy-level studies have found evidence of
potential effects from plant physiological such as Vcmax etc. (Zhang et al., 2014), stomatal
conductance (Flexas et al., 2002), and electron transport rate (Guan et al., 2016), as well as
canopy structure (Fournier et al., 2012) such as LAD (Du et al., 2017; Zhang et al., 2016) and
LAI (Du et al.,, 2017; Yang and van der Tol, 2018). Our regional-level study reveals
differences in SlFyieid apparent @Cross space and time and between vegetation cover types
implying the importance of SIFyieiq apparent In driving the variability of canopy SIF. The findings
further emphasize the important role of the escaping ratio (canopy structure).

The significant variations of SIFyieig apparent revealed in this study may help foster
modeling of GPP at large scales. Similarities between the GPP and SIF equations (Equation 1
and 2) lead to a formal equivalence between GPP: SIF and LUE: SIFyield apparent. The
equivalence of the two equations could help to estimate GPP directly from satellite SIF
observation and to better understand what determines the GPP: SIF slope but only when a
mechanistic relationship between LUE and SIFyieiq apparent 1S €Stablished. Physiologically, there
is a complicated coupling between LUE and @ under various light and plant stress conditions
(Schlau-Cohen and Berry 2015, Van Der Tol et al., 2014). In addition to @, f* and LUE may
also casually covary due to temporal covariation between plant structure and plant function.
The near-infrared reflectance is related to leaf nitrogen content and the ratio of sun-exposed leaf

area to total leaf area which are determinants of photosynthetic capacity (Ollinger et al., 2008,
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Knyazikhin et al., 2013). Meanwhile, the near-infrared reflectance is also supposed to be
correlated to f*° (Yang and van der Tol, 2018). Thus the variability of f* may be associated
with the variability of LUE. Studies using field-level observations have intended to provide an
empirical estimation of the LUE: SIFyieiq apparent relationship (Damm et al., 2010; Miao et al.,
2018; Verma et al., 2017; Yang et al., 2018; Yang et al., 2015). However, the relationship
varies across different seasons and environmental conditions. Further efforts are required by
combining field-level observations, especially long-term observations (Miao et al., 2018;
Yang et al., 2018), and satellite observations to constrain these relationships and advance

understanding of the underlying controlling factors.

5. Conclusions

In this study, we conducted a systematic assessment of the spatio-temporal variability of
SIFyield apparent OF COrn, soybean, forest, and grass/pasture in the U.S. Midwest during the crop
growing season. The state-of-the-art satellite-based SIF products from OCO-2 and TROPOMI
footprint retrievals were used to estimate SIFyieiq apparent OF Specific vegetation types. The high
spatial resolution of the footprints enables accurate estimation of SIFyieig apparent fOr €ach
vegetation type by reducing the intra-pixel mixture effects. Our analysis leads to four main
conclusions: 1) SIFyieiq apparent OF croplands (i.e. corn and soybean) was higher than that of
non-croplands during the peak growing season (July and August) which contributed to the
high SIF observed in the U.S. Corn Belt in the summer. 2) SIFyieiq apparent Of COrn and soybean
did not show significant differences. 3) Different seasonal and spatial patterns of SIFyieiq apparent

were observed among the four vegetation types, which can be partially explained by

47



meteorological factors (i.e. precipitation and temperature) and intra-vegetation type variability
(i.e. among different forest types, and between grass and pasture). 4) The escaping ratio may

be the major driver of the observed variability of SIFyieid apparent.
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Glossary:

SIF: solar-induced chlorophyll fluorescence

SIFinst: instantaneous solar-induced chlorophyll fluorescence

SIFpar: SIFinst Normalized by PAR

SIFyield apparent: @pparent canopy SIF yield, defined as SIF observed in the direction of the sensor
per PAR absorbed by canopies, is a product of fluorescence yield and the escaping ratio.

®¢: fluorescence yield

*C: the escaping ratio, which can be calculated as NIRvV/fPAR

GPP: gross primary production

LUE: light use efficiency of GPP

PAR: photosynthetically active radiation

fPAR: the fraction of absorbed photosynthetically active radiation

APAR: absorbed photosynthetically active radiation

NIRv: the near-infrared reflectance of vegetation, which can be calculated as NDVI*NIR
NIR: the reflectance of near-infrared band

NDVI: normalized difference vegetation index

LAI: leaf area index

LAD: leaf angle distribution
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Highlights

®  SlFyieid apparent IS interpreted using high spatial resolution satellite footprints.

e Different spatio-temporal patterns of SIFyieiq apparent are revealed among vegetation types.

®  SIFyieid apparent OF Croplands is larger than non-croplands in summer.
e Escaping ratio largely explains the variations of SIFyieid apparent in the Midwest.

e Spatial variability of SIFyieiq apparent IS COrrelated to precipitation.
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