U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Thermodynamic and Dynamic Variations in Sea Ice Thickness of the Ross Sea, Antarctica, Driven by Atmospheric Circulation



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Atmospheric circulation has significant impacts on sea ice drifting patterns and mass balance, as wind drag induces pressure ridges and leads on the sea ice surface. In this study, the spatiotemporal distributions of these dynamic sea ice deformation features in the Ross Sea are examined using ICESat‐2 (IS2) ATL10 freeboard data (2019–2022). The temporal variation of the modal sea ice thickness (SIT), caused by thermodynamic ice growth and sea ice advection, varies from 0.7–1.0 m in April to 1.0–1.6 m in July–September and decreases thereafter in the northwest (NW) and northeast (NE) sectors. This temporal variation of modal SIT agrees with the air temperature (correlation coefficients >0.5). The southwest (SW) sector shows a consistently low modal SIT (<1.0 m) because of the production of new ice in polynyas and continuous northward sea ice drift. Meanwhile, the southeast (SE) sector shows the thickest ice in Octobers 2019 and 2020 because of the advection of thick ice from the Amundsen Sea, which was reduced in 2021 and 2022. In terms of dynamic sea ice deformation, the SE sector shows the largest deformation because of the wind‐driven convergence of sea ice movement. However, such intense deformation in the SE sector diminished in 2021 and 2022 due to the dominance of strong southerly wind associated with the Amundsen Sea Low (ASL). This study emphasizes the potential of IS2 sea ice products to assess the role of atmospheric driving forces on thermodynamic and dynamic sea ice changes.
  • Source:
    Journal of Geophysical Research: Oceans, 129(10)
  • DOI:
  • ISSN:
    2169-9275 ; 2169-9291
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:2fcda0df92cac0438146c93ba0e3d1a4118e974d835f34ca26fe3ccff08c0972bb6c49a6bc17ca14f33f3411bbaacec0b3bed79467ed871bb6bf57f98dbbcd91
  • Download URL:
  • File Type:
    Filetype[PDF - 10.94 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.