Evaluation of 10‐m Wind Speed From ISD Meteorological Stations and the MERRA‐2 Reanalysis: Impacts on Dust Emission in the Arabian Peninsula
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Evaluation of 10‐m Wind Speed From ISD Meteorological Stations and the MERRA‐2 Reanalysis: Impacts on Dust Emission in the Arabian Peninsula

Filetype[PDF-12.30 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Mineral dust is one of the most important aerosols when studying the radiative balance and climate of the planet. There are different dust emission schemes utilized by the atmospheric modeling communities, many of which disagree on basic output quantities such as mass of dust emitted and distribution of mass among size bins. In this work, we examined mineral dust emission from a leading model scheme, the Goddard Chemistry Aerosol Radiation and Transport (GOCART), as utilized in the Modern‐Era Retrospective analysis for Research and Applications, Version 2 (MERRA‐2) Reanalysis and compared it to dust emissions calculated using wind measurements from ground based weather stations located in the Arabian Peninsula that are included in the National Oceanic and Atmospheric Administration’s (NOAA) integrated surface database (ISD). An intercomparison of 10‐m wind speed is shown for the Arabian Peninsula region, differences of the observed and modeled wind field are quantified, and impacts of differences on dust emissions are calculated. This analysis shows 10‐m winds in the ISD were generally lower than MERRA‐2 winds, which propagated to dust emissions errors. Our estimate of one of the most significant mass impacts in dust emission is 0.178 Tg/year/grid box with a percent change of over 200% to the recalculated dust emissions from MERRA‐2. These differences in wind speed propagated to a difference in dust mass emitted by the use of a static source function which aids in scaling the mass emitted by the availability of dust in each grid. Additionally, the magnitude of these differences varies seasonally.
  • Source:
    Journal of Geophysical Research: Atmospheres, 129(21)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1