Evaluating evidence for alternative natural mortality and process error assumptions using a state-space, age-structured assessment model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Evaluating evidence for alternative natural mortality and process error assumptions using a state-space, age-structured assessment model

Filetype[PDF-1.46 MB]



Details:

  • Journal Title:
    Canadian Journal of Fisheries and Aquatic Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    State-space models explicitly separate uncertainty associated with unobserved, time-varying parameters from that which arises from sampling the population. The statistical aspects of formal state-space models are appealing and these models are becoming more widely used for assessments. However, treating natural mortality as known and constant across ages continues to be common practice. We developed a state-space, age-structured assessment model that allowed different assumptions for natural mortality and the degree of temporal stochasticity in abundance. We fit a suite of models where natural mortality was either age-invariant or an allometric function of mass and interannual transitions of abundance were deterministic or stochastic to observations on Gulf of Maine – Georges Bank Acadian redfish (Sebastes fasciatus). We found that allowing stochasticity in the interannual transition in abundance was important and estimating age-invariant natural mortality was sufficient. A simulation study showed low bias in annual biomass estimation when the estimation and simulation model matched and the Akaike imformation criterion accurately measured relative model performance, but it was important to allow simulated data sets to include the stochasticity in interannual transitions of abundance-at-age.
  • Source:
    Canadian Journal of Fisheries and Aquatic Sciences, 75(5), 691-703
  • DOI:
  • ISSN:
    0706-652X;1205-7533;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1