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Evaluating evidence for alternative natural mortality and
process error assumptions using a state-space, age-structured
assessment model
Timothy J. Miller and Saang-Yoon Hyun

Abstract: State-space models explicitly separate uncertainty associated with unobserved, time-varying parameters from that
which arises from sampling the population. The statistical aspects of formal state-space models are appealing and these models
are becoming more widely used for assessments. However, treating natural mortality as known and constant across ages
continues to be common practice. We developed a state-space, age-structured assessment model that allowed different assump-
tions for natural mortality and the degree of temporal stochasticity in abundance. We fit a suite of models where natural
mortality was either age-invariant or an allometric function of mass and interannual transitions of abundance were determin-
istic or stochastic to observations on Gulf of Maine – Georges Bank Acadian redfish (Sebastes fasciatus). We found that allowing
stochasticity in the interannual transition in abundance was important and estimating age-invariant natural mortality was
sufficient. A simulation study showed low bias in annual biomass estimation when the estimation and simulation model
matched and the Akaike imformation criterion accurately measured relative model performance, but it was important to allow
simulated data sets to include the stochasticity in interannual transitions of abundance-at-age.

Résumé : Les modèles d’espace d’états séparent explicitement l’incertitude associée aux paramètres variables dans le temps non
observés de celle qui découle de l’échantillonnage de la population. Les aspects statistiques des modèles d’espace d’états formels
sont attrayants et ces modèles sont de plus en plus fréquemment utilisés pour les évaluations. Cependant, il demeure courant de
traiter la mortalité naturelle comme étant connue et ne variant pas selon l’âge. Nous avons développé un modèle d’évaluation
d’espace d’états structuré par âge qui permet différentes hypothèses concernant la mortalité naturelle et le degré de stochasticité
temporelle de l’abondance. Nous avons calé une série de modèles dans lesquels la mortalité naturelle soit ne varie pas selon l’âge
ou est une fonction allométrique du poids, et les transitions interannuelles de l’abondance sont déterministes ou stochastiques,
sur des observations sur le sébaste acadien (Sebastes fasciatus) dans le golfe du Maine – banc de Georges. Nous avons constaté que
le fait de permettre la stochasticité de la transition interannuelle de l’abondance est important et que l’estimation de la mortalité
naturelle non variant pas selon l’âge est suffisante. Une étude de simulation a démontré un faible biais dans l’estimation de la
biomasse annuelle quand l’estimation et le modèle de simulation coïncident et que le critère d’information d’Akaike mesurent
avec exactitude la performance relative du modèle, mais il était important de permettre l’inclusion dans les ensembles de
données simulés de la stochasticité dans les transitions interannuelles d’abondance selon l’âge. [Traduit par la Rédaction]

Introduction
Age-structured models for stock assessments have evolved from

deterministic methods such as virtual population analysis to sto-
chastic models such as statistical catch at age (SCAA) and more
formal state-space models (Gulland 1965; Fournier and Archibald
1982; Mendelssohn 1988). The main difference between SCAA and
state-space models is how process errors in time-varying parame-
ters are modeled and estimated. Traditional SCAA models did not
separate variance of the observations from those attributable to
time-varying processes. Contemporary SCAA models may treat
some parameters as stochastic, time-varying processes, but asso-
ciated probability distributions are treated as penalties to the
likelihood function for survey and catch observations (Legault
and Restrepo 1999; Methot and Wetzel 2013). On the other hand,
formal state-space models separate observation and process er-
rors and maximum likelihood (ML) estimation can be performed
by integrating over the unobserved state variables (Sullivan 1992;
de Valpine and Hastings 2002).

Although the utility of state-space population models has been
demonstrated (Buckland et al. 2004; Newman and Lindley 2006),
they have rarely been used in management of commercial fish
stocks until relatively recently. This may be partly attributable to
the long run times required for fitting Bayesian state-space mod-
els, since the application of assessment models in management
typically requires the ability to fit models with alternative as-
sumptions within a few hours, or even faster. The implementa-
tion of the Laplace approximation to integrate over unobserved
time-series variables for ML estimation in software such as ADMB
(Fournier et al. 2012) and TMB (Kristensen et al. 2016) has facili-
tated increased speeds for fitting state-space models that are sim-
ilar to contemporary SCAA models (e.g., Nielsen and Berg 2014).

As successively more advanced estimation approaches for age-
structured assessment models have developed, the treatment of
natural mortality as known and age- and time-invariant has re-
mained widely practiced in stock assessment for management.
The use of an unestimated constant value for natural mortality
can lead to substantial bias in estimates of parameters in age-
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structured models, with unaccounted for temporal variation in
natural mortality potentially being more serious (Deroba and
Schueller 2013). The difficulties of estimating natural mortality
within population models are well known (Vetter 1988; Quinn and
Deriso 1999; Aanes et al. 2007). Ideally, data from well-designed
tag-recovery experiments are available to be integrated with catch
and relative abundance indices (Fournier et al. 1998; Hampton and
Fournier 2001). However, assuming natural mortality to be known
may be becoming a less frequent practice, even without tagging
data (Lee et al. 2011).

Natural mortality rates are known to decrease with size or age,
particularly at smaller sizes or younger ages of fish (Sette 1943;
Pearcy 1962; Cushing 1974). Ursin (1967) developed an individual-
and metabolically-based rationale for declining mortality rate
with size that is well approximated by an allometric relationship.
Peterson and Wroblewski (1984) also developed an allometric re-
lationship to natural mortality from trophic size distribution
properties. Lorenzen (1996) estimated parameters of the allomet-
ric relationship of natural mortality to individual body mass for
different aquatic ecosystems as well as for each fish species within
the various ecosystem types. Empirical individual mass at age
estimates are routinely used in age-structured assessment models
to form predictions of catch, index, or spawning stock biomass
(SSB). Applying the allometric relationship to annually varying mass
at age estimates is a fairly simple way to consider time- and (or)
age-varying natural mortality with just one more parameter.

Here we develop a flexible state-space, age-structured model
that allows age- and time-varying natural mortality and alterna-
tive assumptions about stochasticity in population abundance-
at-age. As an example application, we fit a suite of models to
observations on the Gulf of Maine (GOM) – Georges Bank (GB) Aca-
dian redfish (Sebastes fasciatus) stock and compared the relative
performance of the models using Akaike’s (1973) information cri-
terion (AIC) and Mohn’s (1999) �. Natural mortality and process
error assumptions vary among these models. We also conduct a
simulation study to evaluate the statistical behavior of parameter
estimation and accuracy of relative model performance using AIC.

Methods

State-space model
All notation we use is defined in Table 1. The definitions for

probability models describing stochastic changes in abundance at
age from one year to another are identical to those given in Miller
et al. (2016). Log-abundance for ages and years greater than 1 are
normally distributed conditional on the vector of numbers at age
from the previous time step:

log(Ny,a) |Ny�1 � N�fa(Ny�1), �N,j
2 �

for y > 1 where N(x, y) indicates a normal distribution with mean x
and variance y,

fa(Ny�1) � � � for a � 1
log�Ny�1,a�1e

�Zy�1,a�1� for 1 � a � A

log�Ny�1,a�1e
�Zy�1,a�1 � Ny�1,ae

�Zy�1,a� for a � A

Zy,a = Fy,a + My,a is the total mortality and A indicates the terminal
age class (i.e., the “plus group”). We assume two different variance
parameters (j = 1 or 2) for the abundance at age: one for the vari-
ance of annual deviations around mean log-recruitment � and
one for interannual transitions of abundance at older ages (�N,1

2

and �N,2
2 , respectively). If �N,2

2 � 0 for ages after recruitment (a > 1),
interannual transitions in abundance at age are deterministic,
like contemporary SCAA models.

We consider two alternative assumptions for natural mortality
My,a. The first is the traditional assumption that natural mortality
is constant across years and ages My,a = M. The second assumption
is that natural mortality varies by age and potentially year via the
allometric relationship to individual body mass:

(1) log(My,a) � b0 � b1 log(Wy,a)

where Wy,a represents the average mass of an individual fish at
age a in year y.

Annual fully-selected fishing mortality rates were parameterized
as deviations from the previous year:

log(Fy�1) � log(Fy) � 	y

where y = 1, …, T – 1 and 	y are the interannual, unpenalized
deviations. Then year- and age-specific fishing mortality is defined
by multiplying age-specific selectivity by annual fishing mortality,
Fy,a = sC,aFy, where sC,a is selectivity at age for the fishing fleet that
is based on a logistic form

(2) sC,a � [1 � e�(a�a50,C)/kC]�1

Observed log-aggregate relative abundance indices from survey d
are also normally distributed:

log(Id,y) � N�log(Îd,y), �d,y
2 �

where observation error variances �d,y
2 are assumed known. The

predicted relative abundance index at age a in year y is

Îd,y,a � qdsd,aNy,ae
�Zy,a
d

where qd is the fully-selected catchability from survey d, sd,a is the
age-specific selectivity from survey d also based on the logistic
form in eq. 2, and 
d is the fraction of the year elapsed when
survey d occurs. Separate logistic selectivity parameters (a50,d and kd)
are assumed for each survey. The predicted aggregated relative abun-
dance index is just the sum over ages:

Îd,y � �
a�1

A

Îd,y,a

Finally, the observed log-aggregate catches by the fishing fleet are
also normally distributed:

log(Cy) � N�log(Ĉy), �C,y
2 �

where observation error variances �C,y
2 are assumed to be known.

The predicted catch-at-age given abundances at age is

(3) Ĉy,a �
Fy,a

Zy,a
(1 � e�Zy,a)Ny,aWC,y,a

where WC,y,a is the mass at age in the catch. The predicted aggre-
gated annual catch is just the sum over ages:

(4) Ĉy � �
a�1

A

Ĉy,a

We assumed a multinomial distribution for the vector of frequen-
cies at age for survey d in year y:
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(5) nd,y � Ed,ypd,y � Multinomial (Ed,y, p̂d,y)

where Ed,y represented the sample size and the age-specific ele-
ments of the vector p̂d,y are

p̂d,y,a �
Îd,y,a

Îd,y

We also assume a multinomial distribution for the fishing fleet
catch with sample size EC,y and proportions at age in the catch:

p̂C,y,a �
C̃y,a

C̃y

where C̃y,a is the predicted number at age (i.e., eq. 3 with WC,y,a = 1)
and C̃y is analogous to eq. 4.

Parameter estimation
We define fixed effects � as parameters estimated by ML and

random effects S as unobserved variables that are integrated out
to obtain the marginal likelihood, which is maximized. All abun-
dances at age and fully-selected fishing mortality in the first year

Table 1. Definition of terms.

a Index for ages
y Index for years
A Last age class (“plus group”)
Ny Vector of abundance at age in year y
Ny,a Abundance at age a in year y
� Mean log-recruitment after first year
�N,1

2 Variance of annual log-recruitment deviations from mean �
�N,2

2 Variance in stochastic annual transition of abundance at age
Zy,a Total mortality rate at age a in year y
Fy,a Fishing mortality rate at age a in year y
Fy Fully-selected fishing mortality rate in year y
My,a Natural mortality rate at age a in year y
	y Interannual deviation between log(Fy) and log(Fy+1)
sC,a Selectivity at age a in the fishing fleet
a50,C, kC Logistic selectivity parameters for age composition observation from the fishing fleet
d Index for surveys
qd Fully-selected catchability for survey d
l�, u� Lower and upper estimation bounds for a parameter �
sd,a Selectivity at age a for survey d
b0, b1 Parameters in the allometric relationship of natural mortality to body mass
Wy,a Average individual body mass of a fish at age a in year y
a50,d, kd Logistic selectivity parameters for age composition observation from survey d
Id,y Observed aggregate relative abundance index in year y for survey d
Îd,y Predicted aggregate relative abundance index for survey d in year y
�d,y

2 Variance of observation errors for survey d in year y
Îd,y,a Predicted relative abundance index at age a in year y for survey d

d Fraction of the year elapsed when survey d occurs
Cy Observed aggregate fishing fleet catch in year y
Ĉy,a Predicted fishing fleet catch (biomass) at age a in year y
Ĉy Predicted aggregate fishing fleet catch (biomass) in year y
�C,y

2 Variance of observation errors for fishing fleet catch in year y
WC,y,a Average individual body mass of a fish at age a in year y in fishing fleet catch
nd,y Vector of observed age composition frequencies in year y from survey d
Ed,y Sample size in the multinomial distribution for age composition observations in year y from survey d
EC,y Sample size in the multinomial distribution for age composition observations in year y for fishing fleet catch
C̃y,a Predicted fishing fleet catch (numbers) at age a in year y
C̃y Predicted aggregate fishing fleet catch (numbers) in year y
pd,y Vector of observed age composition proportions in year y from survey d
p̂d,y Vector of predicted age composition proportions in year y from survey d
pC,y Vector of observed age composition proportions in year y for fishing fleet catch
p̂C,y Vector of predicted age composition proportions in year y for fishing fleet catch
p̂d,y,a Predicted proportion at age a in year y for survey d
p̂C,y,a Predicted proportion at age a in year y for fishing fleet catch
� Vector of all parameters estimated by maximum likelihood (fixed effects)
S Vector of all state variables or random effects parameters (e.g., abundance at age)
L Joint likelihood of all parameters conditional on observations
Li Likelihood component i
D Vector of all observations
�(�) Mohn’s � for parameter �
T Number of years in the model
t Index for years of data peeled for Mohn’s �
m Total number of years peeled for Mohn’s �
�y,t(�) Relative difference of estimates for parameter � in year y using data from years up to T − t and T
RDi(�) Relative difference of estimate and true value for parameter � of simulated data set i
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(N1 and F1), mean log-recruitment (�) and annual deviations in
log-fully-selected fishing mortality (	y) after the first year, index
catchability (qd), all selectivity parameters (a50,C, kC, a50,d, kd), pro-
cess error variances (�N,1

2 , �N,2
2 ), and natural mortality parameters

(M, b0) are estimated as fixed effects. Recruits after the first year
(Ny,1) and, depending on the model, abundance at older ages (Ny,a
for a > 1) are treated as random effects.

The joint likelihood function is the product of the likelihood
components defined in Appendix A:

L(�, S |D) � 	
i

Li

The joint likelihood is a function of fixed effects parameters � and
random effects S representing the state variables (i.e., abundance
at age) conditioned on all observations D. We perform ML estima-
tion of the fixed effects parameters with a Laplace approximation
of the marginal log-likelihood function (Skaug and Fournier 2006):

log
�L(�, S |D)dS� � log[L(� |D)]

using TMB (Kristensen et al. 2016) and R (R Core Team 2015) for
implementing and fitting the state-space models. Specifically, we
used the “nlminb” function in R to minimize the negative of the
Laplace approximation of the marginal log-likelihood. Estimates
of the random state variables are provided by the mode of poste-
rior distributions of S, conditioned on �̂. For a fuller description of
variance estimation by the TMB package, see Kristensen et al.
(2016).

Application to GOM–GB Acadian redfish
For demonstration purposes, we applied our model to the

GOM–GB Acadian redfish stock. GOM–GB Acadian redfish have
been primarily caught by trawl and gill net, and the National
Marine Fisheries Service Northeast Fisheries Science Center an-
nual bottom trawl surveys in the spring (1968–2014) and fall (1963–
2014) are used for relative abundance indices of Acadian redfish
(Miller et al. 2008; Linton 2015). Here we use the abundance indi-
ces, fishing fleet catches, and any associated age composition ob-
servations from 1969 to 2014. All observations and inputs we used
to fit models can be obtained at www.nefsc.noaa.gov/saw/sasi/
sasi_report_options.php. We used estimates of observation error
variances (�C,y

2 and �d,y
2 for total catch and surveys) that are also

used in the current assessment model. We also used the same
assumptions for the sample sizes of the age composition observa-
tions. The uncertainties in total catch come from estimates of
variance of the discard component, and those for the survey indi-

ces are based on the stratified random sampling design used for
the Northeast Fisheries Science Center bottom trawl surveys.

We considered six alternative models for GOM–GB Acadian red-
fish (Table 2). We refer to the first three (M1–M3) as SCAA models
because the only process error is in recruitment (Ny,1). The only
difference from a traditional SCAA model is that the recruitment
deviations are treated as random effects and the variance of these
deviations (�N,1

2 ) is estimated. The second three models (M4–M6)
are formal state-space models that treat the interannual transitions
of abundance at age stochastically, and the variance of this process
error (�N,2

2 ) is also estimated. The differences among models M1–M3
and among M4–M6 are in the assumptions for natural mortality.
Models M1 and M4 assume a known age-invariant natural mortal-
ity of M = 0.05 (as in the assessment model currently used for
management), models M2 and M5 estimate an age-invariant nat-
ural mortality rate, and models M3 and M6 estimate the scalar
term of the allometric relationship to mass and constrain b1 to the
value estimated by Lorenzen (1996) for marine fish species (0.305).
Although the general allometric relationship in eq. 1 allows inter-
annual variation in natural mortality at age when mass at age
changes over time, the mass at age for this stock is currently
treated as constant over time because mass at age observations are
not available over the entire time series (see Table S11). Therefore,
models M3 and M6 only allow variation in natural mortality with
age for this application to GOM–GB Acadian redfish. In Table 3, we
summarize numbers, initial values, and any bounds for parame-
ters estimated by ML for each of the six models. Most parameters
are estimated on a log-scale or a logit-scale to avoid boundary
problems during estimation. The bounds are only necessary for
the logit-transformed catchability and selectivity parameters. For
example, the catchability for survey d is

qd � lqd
�

uqd
� lqd

1 � e�logit(qd)

where l� and u� are lower and upper bounds of parameter � and
logit(�) is the actual parameter estimated in the model. The num-
ber of fixed effects parameters estimated by ML ranged between
82 and 84, depending on the assumptions of each model. We
specified initial values of 10 for random numbers at age effects
log(Ny,a) after year 1.

Model performance
To evaluate the relative model performance, we used AIC and the

measure of retrospective pattern, Mohn’s (1999) �, to compare mod-
els. For AIC, we used the maximized marginal log-likelihood and the
number of fixed effects parameters. We calculated Mohn’s � as

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2017-0035.

Table 2. Details of models fitted to Gulf of Maine − Georges Bank (GOM−GB) Acadian redfish (Sebastes fasciatus) data and assumed for simulation
studies.

Model Description

M1 Statistical catch at age (SCAA) model (�N,2
2 � 0) with natural mortality fixed at My,a = 0.05

M2 SCAA model (�N,2
2 � 0) with age- and time-invariant natural mortality estimated

M3 SCAA model (�N,2
2 � 0) with an allometric relationship of natural mortality to body mass where b0 is estimated and b1 = 0.305 is assumed

based on Lorenzen (1996)
M4 State-space model with stochastic interannual transitions of abundance at age (�N,2

2 estimated) and natural mortality fixed at My,a = 0.05
M5 State-space model with stochastic interannual transitions of abundance at age (�N,2

2 estimated) and age- and time-invariant natural
mortality estimated

M6 State-space model with stochastic interannual transitions of abundance at age (�N,2
2 estimated) and an allometric relationship of natural

mortality to body mass where b0 is estimated and b1 = 0.305 is assumed based on Lorenzen (1996)
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�(�) �
1
m �

t�1

m
�̂T�t,T�t

�̂T�t,T

� 1

where T is the terminal year of the data series, t is the number of
years peeled off from the terminal year, m is the number of total
years peeled off from the terminal year, and �̂T�t,y is the estimate
of a parameter for year T – t from fitting the assessment model to
data with terminal year y. We used m = 5 peels from the terminal
year in Mohn’s � for estimates of annual SSB and annual fully-
selected fishing mortality, since Miller and Legault (2017) found
Mohn’s � to change negligibly with further peels. For illustrative
purposes, we also define

�y,t(�) �
�̂y,T�t

�̂y,T

� 1

as the relative difference of parameter estimates for year y using
data up to years T – t and T.

Simulation study
We performed a simulation study with two analogous compo-

nents. For each component, we simulated 1000 sets of aggregate
relative abundance and catch observations and corresponding age
composition observations for each of six scenarios according to
the assumptions of models in Table 1. The true parameter values
used in the models are those estimated from the fits to the
GOM–GB Acadian redfish data. The difference between the two
components was how the population abundances at age were
treated. In the first component, we conditioned on the abundance
at age estimated from each fitted model so that the population
abundance at age was the same for each simulated data set. For
the second component, we allowed the abundance at age to be
stochastic according to the assumptions of each model. Therefore,
for the first three models, abundance at age was only stochastic
through the annual recruitment process. For the latter three mod-
els, stochasticity of abundance at age also arises through the log-
normal interannual transitions. We fit all six models to each
simulated data set.

Given the results from these simulations, we performed two
sensitivities. In the first sensitivity, we fit model M4 (fixed natural
mortality) to the data simulated under model M5 using the esti-
mated natural mortality rate from fitting M5 to the GOM–GB Aca-
dian redfish data as the fixed, unestimated natural mortality rate.
The second sensitivity was identical to the simulation scenario
described where parameter estimates from fitting model M4 to

the GOM–GB Acadian redfish data were used to simulate data and
model M4 was also used to estimate parameters for these simu-
lated data sets. However, we used restricted ML estimation by
assuming flat priors and treating all parameters other than the
process error variances as random effects (Harville 1974).

We used the median relative difference of parameter estimates
and true values to estimate bias for a given scenario. The relative
difference of a parameter estimate �̂i from the true value �i for
simulated data set i is

RDi(�) �
�̂i

�i
� 1

For results of a given model assumption and fitting scenario, we
also calculated 95% confidence intervals of the median relative
bias using the binomial distribution method (Thompson 1936).
We used the fits to all models to evaluate the accuracy of AIC as a
measure of relative model performance.

Results
All six models we fit to the GOM–GB Acadian redfish data con-

verged, with an invertible Hessian providing variance estimation
of parameters estimated by ML. Using AIC as a measure of relative
model performance, the state-space models (M4–M6) outper-
formed the SCAA models that only allowed variation in recruit-
ment (M1–M3) (Table 4). Within each class of models (state-space
or SCAA), those that allowed natural mortality to be estimated
performed better than those where it was assumed to be 0.05, as
in the current assessment model (Linton 2015). However, impos-
ing the allometric relationship for natural mortality performed
worse than age-invariant natural mortality for both SCAA and
state-space models. The model with the lowest AIC (M5) resulted
in an estimated natural mortality rate of 0.14 (SD = 0.02); the
corresponding estimate from the SCAA version (M2) was nearly
the same. Estimates of abundance, fishing mortality, and survey
catchability at age from model M5 are provided in the supplemen-
tary materials.

Retrospective patterns as estimated by Mohn’s � were relatively
minor for SSB and fully-selected fishing mortality with absolute
values ≤0.27 for all models (Table 4). The SCAA and state-space
models with natural mortality fixed (M1 and M4) performed sim-
ilarly and had the highest Mohn’s � estimates (in absolute value)
of the models we considered. Mohn’s � estimates were lowest in
absolute value for models where age-invariant natural mortality
was estimated (M2 and M5), with those for the state-space model
negligibly lower. The models with natural mortality estimated
also exhibited an increasing trend in the natural mortality esti-
mates with additional years of data (e.g., 0.12–0.14 for M5) that

Table 3. Number, initial values, and any specified bounds for parameters
estimated by maximum likelihood for each model fitted to the GOM−GB
Acadian redfish data.

Parameter M1 M2 M3 M4 M5 M6 Initial value Bounds (l�, u�)

log(N1) 26 26 26 26 26 26 10
� 1 1 1 1 1 1 10
logit(q) 2 2 2 2 2 2 −8 (0, 1000)
log(F1) 1 1 1 1 1 1 −2
	y 45 45 45 45 45 45 0
logit(a50,C) 1 1 1 1 1 1 0 (−26, 26)
logit(kC) 1 1 1 1 1 1 0 (0, 26)
logit(a50,d) 2 2 2 2 2 2 0 (−26, 26)
logit(kd) 2 2 2 2 2 2 0 (0, 26)
log(M) 0 1 0 0 1 0 log(0.05)
log(b0) 0 0 1 0 0 1 log(0.05)
log(�N,1) 1 1 1 1 1 1 0
log(�N,2) 0 0 0 1 1 1 0
Total 82 83 83 83 84 84

Table 4. Difference in the Akaike
imformation criterion (AIC) from the
model with the lowest value (�AIC)
and estimates of Mohn’s � for spawn-
ing stock biomass (SSB) and fully-
selected fishing mortality (F) for each
of the models fitted to the GOM−GB
Acadian redfish observations.

�AIC SSB F

M1 511.361 0.270 −0.187
M2 410.130 0.076 −0.030
M3 462.624 0.122 −0.071
M4 21.091 0.260 −0.188
M5 0.000 0.004 0.021
M6 13.351 0.068 −0.041
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Fig. 1. Relative difference of annual spawning stock biomass (SSB) and fully-selected fishing mortality (F) estimates from five peels and corresponding estimates from the full data set for
each of the six models in Table 2.
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Fig. 2. Annual estimates of SSBy, Fy, and recruitment (Ny,1) and 95% confidence intervals for each of the six models in Table 2.
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generally resulted in a corresponding trend in the population size
(Fig. 1).

Trends in annual estimates of SSB, fully-selected fishing mortal-
ity, and recruitment were similar for all models, but the scale and
range of estimates differed (Fig. 2). The scale of annual SSB esti-
mates was greatest for models where invariant natural mortality
was estimated (M2 and M5). There is greater uncertainty in SSB
estimates for models M2 and M3 than for M1 and for M5 and M6
than for M4 because of the natural mortality being estimated
rather than fixed.

Comparing models with the same natural mortality assump-
tion, SSB estimates from the state-space model are also more un-
certain because of the process error in the interannual transitions
in the abundance at age. Ratios of coefficients of variation (CVs)
for annual SSB estimates ranged from 0.08 to 0.73, from 0.32 to
0.49, and from 0.29 to 0.54 for models M1 to M4, M2 to M5, and M3
to M6, respectively. Fully-selected fishing mortality estimates for
recent years (2000–2014) were low for all models (0.002–0.018), but
annual estimates prior to this were greatest for models M1 and
M4. The higher fully-selected fishing mortality in models with
lower SSB estimates is expected given the same catch data.

There is also a large difference in the 1991 fully-selected fishing
mortality estimate from model M1. This fishing mortality rate is
also estimated much higher in the GOM–GB Acadian redfish as-
sessment, which uses a similar SCAA model (Linton 2015); how-
ever, the uncertainty in this estimate is larger than for other years
due to large uncertainty in the corresponding catch observation.
The scale and variation of recruitment estimates were greatest for
models assuming an allometric relationship of natural mortality
to individual mass (M3 and M6) because of the higher natural
mortality imposed at younger aged individuals in the population.

Simulation study
Convergence of fitted models (as indicated by the nlminb flag only)

depended on the type of fitted model and whether stochasticity in
abundance at age was simulated. Fits of state-space models (M4–M6)
to data simulated under models M1–M3 understandably did not con-
verge because of the impossibility of estimating process error vari-
ances when process errors do not exist (Tables 5 and 6). When data
were simulated from state-space models (M4–M6), lack of conver-
gence was generally infrequent (<4.5%) whether SCAA type models
(M1–M3) or state-space models were fitted or whether stochasticity in
the abundance at age was simulated. The SCAA-type models (M1–M3)

converged for a high percentage of data sets for all assumed mod-
els whether or not stochasticity in the abundance at age was sim-
ulated, but the convergence rate was slightly greater when SCAA
models were assumed to simulate data sets. However, lack of
convergence was greater when models M2 (11.4%) and M3 (10.6%)
were fitted to data simulated assuming model M4 with stochastic-
ity in numbers at ages. This was likely due to the misspecified
fixed natural mortality rate for the fitted model and the much
wider variation in the realized population sizes of the data sets.

The lowest AIC was always obtained for models with the correct
assumptions about stochasticity in the interannual transitions of
abundance at age (SCAA versus state-space), whether or not the
data sets included stochasticity in abundance at age (Tables 7 and
8). However, AIC only accurately determined the correct natural
mortality assumption among state-space models for data sets
where the stochasticity in abundance at age was accounted for in
simulated data sets. For more detailed results from the simulation
study, we focus on the component that included stochasticity in
abundance at age in the simulated data sets.

When the simulated and fitted models matched, median bias of
annual SSB estimates was at most 5%. The bias was worst for
model M4 (3%–5%), the state-space model when natural mortality
was fixed at the true value (Fig. 3). Curiously, the bias was absent
or negligible when natural mortality was estimated (fitting M5 to
data simulated under M4). To verify that this was not due to an
error in the simulation, we performed the first sensitivity de-
scribed above in the simulation study methods. We fit models to
data simulated assuming M5 but fixing natural mortality at the
higher value estimated from the original data (M = 0.14). Fits of
these models also produced a similar slight positive bias in SSB
estimates. There was also evidence of a smaller positive bias in
some of the annual SSB estimates under model M6, but otherwise,
bias was negligible when the simulated and fitted model matched.

When simulated data and fitted models did not match, bias in
SSB estimation was variable. The worst bias occurred when model
M1 was fitted to data simulated under any of the other scenarios
(extremes of –71% and 73% for data simulated under M2 and M4,
respectively) and when model M4 was fitted to data assuming
models M5 and M6 (extremes of <−56% and <−40%, respectively).
Both M1 and M4 assume a natural mortality of 0.05 and bias would
be expected when assuming the incorrect natural mortality rate
when the true estimated natural mortality was higher, as esti-
mated in models M2 and M5. Although the bias was relatively

Table 5. Convergence of models fitted (columns) to data sets simu-
lated assuming parameters estimated by each model (rows) and con-
ditioned on estimated abundance at age.

M1 M2 M3 M4 M5 M6

M1 998 997 999 0 0 0
M2 998 995 996 1 0 0
M3 995 996 994 0 0 0
M4 993 992 984 981 986 986
M5 994 991 987 980 978 979
M6 992 987 988 983 980 974

Table 6. Convergence of models fitted (columns) to data sets simu-
lated assuming parameters estimated by each model (rows) and sto-
chastic abundance at age.

M1 M2 M3 M4 M5 M6

M1 1000 995 995 0 0 1
M2 996 1000 996 208 0 0
M3 996 993 998 35 0 0
M4 958 886 894 975 978 980
M5 969 965 964 979 982 979
M6 976 955 976 972 978 976

Table 7. Frequencies of models fitted (columns) with lowest AIC to
data sets assuming parameters estimated by each model (rows) and
conditioned on estimated abundance at age.

M1 M2 M3 M4 M5 M6

M1 750 104 146 0 0 0
M2 0 953 47 0 0 0
M3 0 63 937 0 0 0
M4 0 0 0 0 1000 0
M5 0 0 0 0 1000 0
M6 0 0 0 0 1000 0

Table 8. Frequencies of models fitted (columns) with lowest AIC to
data sets assuming parameters estimated by each model (rows) and
stochastic abundance at age.

M1 M2 M3 M4 M5 M6

M1 753 107 140 0 0 0
M2 0 963 37 0 0 0
M3 0 59 941 0 0 0
M4 0 0 0 703 120 177
M5 0 0 0 0 805 195
M6 0 0 0 16 189 795
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large when the natural mortality was correctly assumed known
and stochasticity of interannual transitions in abundance at age
was ignored (fitting model M1 to data simulated assuming model
M4), estimation bias was relatively modest (1%–8%) when natural
mortality was estimated (M2 or M3 fitted to data simulated under
models M5 or M6). Patterns in estimation bias for annual fully-
selected fishing mortality were similar to the results for SSB, al-
though opposite in sign as one would expect (Fig. 4); with a given
catch history, higher abundance requires lower harvest rates and
vice versa to best fit the data.

As expected with ML estimation, we found negatively biased
estimation of variances for recruitment and interannual transi-
tions of abundance at age (Fig. 5). However, the bias (−14% to −16%)
was only considerable for the variance of interannual transitions
(�N,2

2 ) in the state-space models M4–M6. We performed restricted
ML estimation of these variances as described for the second sen-
sitivity in the simulation study methods for the M4 simulated data
sets to verify that ML was the cause; median relative bias of the

restricted ML estimation for �N,2 was 0.9% (95% confidence inter-
val: 0.2%–1.5%).

Bias in estimation of natural mortality parameters was evident
in the state-space models (−4% and −5% for models M5 and M6,
respectively) but median bias of estimation in the SCAA models
was negligible (−0.2% and −0.3% for models M2 and M3, respec-
tively) and confidence intervals included zero. Median bias of ML
estimates for other parameters is provided in the supplementary
materials.

Discussion
Of the six models we considered for GOM–GB Acadian redfish,

we found that the state-space models (M4–M6) outperformed the
SCAA models (M1–M3) with respect to AIC and that the best per-
forming model (M5) also exhibited negligible retrospective pat-
tern. We also found that estimating a constant natural mortality
rate performed better, based on AIC, than the allometric relation-

Fig. 3. Median relative difference and 95% confidence intervals of SSB estimates from fitting each of the six models (columns) in Table 2 to data sets
simulated according to assumptions of each of the models (rows) and stochastic abundance at age. Missing plots correspond to fitted models that
did not converge for the simulated data sets.
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ship of natural mortality to mass. Initially, we attempted estimat-
ing both of the allometric coefficients (b0 and b1), but estimates of
b1 would tend to zero, yielding the constant natural mortality
model (M2 or M5), which, of course, provided a better fit to the
data. The natural mortality rate estimated from model M5 (0.14) is
approximately three times the value assumed in the current as-
sessment used to provide management advice for GOM–GB Aca-
dian redfish (e.g., Linton 2015) and is fairly precise (CV = 0.13). We
found less retrospective pattern in SSB and fully-selected fishing
mortality when natural mortality was estimated, whether the
SCAA-like model or the state-space model was used to fit the data.
This is consistent with the finding by Miller et al. (2008) of less
retrospective patterns in SSB and fully-selected fishing mortality
with a higher natural mortality rate of 0.1 in a previous assess-
ment using an SCAA model. The same natural mortality rate is
also used in assessment models for other Atlantic redfish stocks,
but a higher value of M = 0.1 has previously been used for at least
one golden redfish (Sebastes marinus or Sebastes norvegicus) stock and

a declining natural mortality rate at age (0.2 at age 1 to 0.05 at age 5)
is used for another golden redfish stock (ICES 2012). The lower
value of 0.05 is surely an approximation, but the difference be-
tween that and our estimate from model M5 does not seem to be
attributable to precision of the estimate. Rather than there truly
being a higher natural mortality for this stock, the “extra” mor-
tality could be due to various issues such as unreported harvest or
net migration from the area considered for the stock. Further-
more, some variation in this rate over time is likely, although we
did not consider such models here.

Although the allometric relationship for natural mortality did
not apply to GOM–GB Acadian redfish, we found in our simulation
study that such a relationship is estimable and AIC accurately
determined it as best when it existed. Application of these models
to other stocks would be helpful to see whether the allometric
relationship performs better for certain types of life histories.
Other parameterizations of natural mortality such as with density-
dependent effects (Beverton and Holt 1957, Section 7.3; Powers

Fig. 4. Median relative difference and 95% confidence intervals of F estimates from fitting each of the six models (columns) in Table 2 to data sets
simulated according to assumptions of each of the models (rows) and stochastic abundance at age. Missing plots correspond to fitted models that
did not converge for the simulated data sets.
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2014) would also result in time-varying natural mortality and the
estimability of such assumptions should be investigated.

There was also a substantially lower uncertainty in SSB and
fully-selected fishing mortality estimates for SCAA models than
state-space models with the same natural mortality assumptions.
The CVs of SSB estimates from SCAA models with any of the
natural mortality assumptions were between 92% and 27% lower
than the corresponding estimates from state-space models. The
CVs for annual SSB estimates from the last GOM–GB Acadian red-
fish assessment using an SCAA model had the same range (0.01–
0.11) as those from the most similar model M1 we fit.

We found that AIC performed well in that the correct model
had the lowest AIC for a high percentage of the simulated data
sets in each scenario. Furthermore, it was important to simulate
the random effects associated with the stochasticity of the abun-
dance at age of the population to evaluate the accuracy of AIC.
Other simulation studies involving state-space models have also
accounted for this variation (de Valpine and Hastings 2002;
de Valpine and Hilborn 2005; Pedersen et al. 2011). The simulation
study also found that marginal likelihood-based AIC was espe-
cially accurate in differentiating SCAA-type models from state-
space models where there was stochasticity in the interannual
transitions in the abundance at age.

Another important finding from the simulation study was that
using SCAA models when data are generated with process error in
the interannual transitions in abundance at age resulted in poor
estimation of SSB and fully-selected fishing mortality. The bias
was particularly pronounced when natural mortality was assumed
known for the SCAA model (M1 assumed for M4-based simulations),
a widely used assessment model parameterization for fisheries man-
agement.

Together, the relative differences in estimated precision of the
SSB estimates from the SCAA and state-space models and the
results from the simulation study have potentially important im-
plications, at least for GOM–GB Acadian redfish. These results
would imply that only considering SCAA models would result in
both biased estimation of annual SSB estimates and an incorrect

perception of much greater precision in the estimates. We did not
calculate standard errors of parameter estimates for each of the
fits to simulated data because this would greatly increase the
computation time, but we suspect this is a general result. Of
course, whether these findings apply to other stocks remains to be
investigated.

In a study evaluating estimability of natural mortality in SCAA
models, Lee et al. (2011) found that the proportion of good fits
ranged between 76% and 100% for all but one of the 12 simulation
scenarios they considered, using the value of the maximum gra-
dient at convergence as a criterion of utility of the model fit.
Although we simply used the convergence flag that the nlminb
function returns, our convergence rates (89%–100%) are consistent
with these for many scenarios we considered, including those
with stochasticity in abundance at age and mismatches between
the model used to simulate and fit the data sets. Understandably,
the only scenarios that resulted in poorer convergence were those
where state-space models were fit to data simulated with deter-
ministic interannual transitions of abundance at age.

Simulation testing of the accuracy of model selection methods
is not common in the fisheries literature. Focus of these studies
has mostly been on differentiating stock–recruitment models
(de Valpine and Hastings 2002; Wang and Liu 2006; Zhou 2007)
and, as we have here, assessment models (but see Helidoniotis and
Haddon (2013) for an application to growth models). The poor
ability of AIC to determine the correct state-space models when
data sets were conditioned on the estimated abundance at age
seems appropriate because the fitted models assume two sources
of stochasticity (observation and process error) when there is only
observation error in the simulated data sets. The accuracy of AIC
for models M2 and M3, which assumed deterministic transitions
in abundance at age, was nearly perfect whether or not simulated
data sets included stochasticity in recruitment. These results are
consistent with those found by Helu et al. (2000) for Stock Synthe-
sis models in a comparable simulation study. However, in a sim-
ulation study comparing Bayesian assessment models, Jiao et al.
(2012) found much poorer accuracy of the deviance information

Fig. 5. Median relative difference and 95% confidence intervals of process error standard deviation (�N,1 and �N,1) and natural mortality parameter
(M and b0) estimates from data sets simulated assuming the same assumptions as the fitted model and stochastic abundance at age.
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criterion (as low as 2.5%) than we found for AIC in any of the six
scenarios. Wilberg and Bence (2008) found better accuracy using
the deviance information criterion comparing Bayesian models
for lake whitefish with different assumptions on fishing fleet
catchability. Cadigan (2016) performed a simulation study to self-
test the statistical performance of the best state-space model that
he fit to northern cod observations. The simulations conditioned
on the abundance at age estimated from the original model fits
are analogous to the first type of simulated data sets we analyzed
where the fitted model matched the simulation model. Interest-
ingly, Cadigan (2016) found bias in some annual SSB estimates
greater than 10%, which is larger than we found for the state-space
models we fit to data sets that also included stochasticity in the
abundance at age. Variation in these results is likely a function of
the differences in informativeness of the data to each of the mod-
els and the life and harvest histories of the stocks simulated,
which indicates that such simulation tests should be carried out
for candidate models when assessing fish stocks for management
purposes.
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Appendix A

Joint likelihood components
The joint likelihood component for log-abundance at age is

L1 � 	
y�2

T

	
a�1

A
1


2
�N,j

e

1

2�N,j
2

(logNy,a � f (Ny�1))
2

where j = 1 when a = 1 and j = 2 otherwise. The joint likelihood
component function for log-aggregate fishing fleet catch observa-
tions is

L2 � 	
y�1

T
1


2
�C,y

e

1

2�C,y
2

(logCy � logĈy)
2

The joint likelihood component for the multinomial distribution
for the age composition data (eq. 5) from the fishing fleet catch is

L3 � 	
y�1

T �EC,y!	
a�1

A p̂C,y,a
nC,y,a

nC,y,a!�
Similarly, the joint likelihood component for log-aggregate rela-
tive abundance indices for survey d (there are two surveys used in
the model) is

L3�d � 	
y�1

T
1


2
�d,y

e

1

2�d,y
2

(logIy � logÎy)
2

and the joint likelihood component for the multinomial distribu-
tion for the age composition data for survey d is

L5�d � 	
y�1

T �Ed,y!	
a�1

A p̂d,y,a
nd,y,a

nd,y,a!�
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