Potential Benefits and Challenges of Quantifying Pseudoreplication in Genomic Data with Entropy Statistics
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Potential Benefits and Challenges of Quantifying Pseudoreplication in Genomic Data with Entropy Statistics

Filetype[PDF-1.65 MB]



Details:

  • Journal Title:
    Entropy
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Generating vast arrays of genetic markers for evolutionary ecology studies has become routine and cost-effective. However, analyzing data from large numbers of loci associated with a small number of finite chromosomes introduces a challenge: loci on the same chromosome do not assort independently, leading to pseudoreplication. Previous studies have demonstrated that pseudoreplication can substantially reduce precision of genetic analyses (and make confidence intervals wider), such as FST and linkage disequilibrium (LD) measures between pairs of loci. In LD analyses, another type of dependency (overlapping pairs of the same loci) also creates pseudoreplication. Building on previous work, we explore the potential of entropy metrics to improve the status quo, particularly total correlation (TC), to assess pseudoreplication in LD studies. Our simulations, performed on a monoecious population with a range of effective population sizes (Ne) and numbers of loci, attempted to isolate the overlapping-pairs-of-loci effect by considering unlinked loci and using entropy to quantify inter-locus relationships. We hypothesized a positive correlation between TC and the number of loci (L), and a negative correlation between TC and Ne. Results from our statistical models predicting TC demonstrate a strong effect of the number of loci, and muted effects of Ne and other predictors, adding support to the use of entropy-based metrics as a tool for estimating the statistical information of complex genetic datasets. Our results also highlight a challenge regarding scalability; computational limitations arise as the number of loci grows, making our current approach limited to smaller datasets. Despite these challenges, this work further refines our understanding of entropy measures, and offers insights into the complex dynamics of genetic information in evolutionary ecology research.
  • Source:
    Entropy, 26(9), 805
  • DOI:
  • ISSN:
    1099-4300
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1