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Abstract: Generating vast arrays of genetic markers for evolutionary ecology studies has become
routine and cost-effective. However, analyzing data from large numbers of loci associated with
a small number of finite chromosomes introduces a challenge: loci on the same chromosome do
not assort independently, leading to pseudoreplication. Previous studies have demonstrated that
pseudoreplication can substantially reduce precision of genetic analyses (and make confidence in-
tervals wider), such as FST and linkage disequilibrium (LD) measures between pairs of loci. In
LD analyses, another type of dependency (overlapping pairs of the same loci) also creates pseu-
doreplication. Building on previous work, we explore the potential of entropy metrics to improve
the status quo, particularly total correlation (TC), to assess pseudoreplication in LD studies. Our
simulations, performed on a monoecious population with a range of effective population sizes (Ne)
and numbers of loci, attempted to isolate the overlapping-pairs-of-loci effect by considering unlinked
loci and using entropy to quantify inter-locus relationships. We hypothesized a positive correlation
between TC and the number of loci (L), and a negative correlation between TC and Ne. Results
from our statistical models predicting TC demonstrate a strong effect of the number of loci, and
muted effects of Ne and other predictors, adding support to the use of entropy-based metrics as a tool
for estimating the statistical information of complex genetic datasets. Our results also highlight a
challenge regarding scalability; computational limitations arise as the number of loci grows, making
our current approach limited to smaller datasets. Despite these challenges, this work further refines
our understanding of entropy measures, and offers insights into the complex dynamics of genetic
information in evolutionary ecology research.

Keywords: entropy; pseudoreplication; genomics

1. Introduction

One consequence of the genomics revolution is that it is now relatively easy and
inexpensive to generate large numbers of genetic markers—commonly 103–107 loci, even
for non-model species. This has greatly increased statistical power for many traditional
genetic analyses; when combined with detailed information about structure of the genome,
it has also opened up possibilities to address qualitatively new questions in evolutionary
ecology [1–3]. An important limitation of this wealth of new genomics data is that in real
organisms, all of these loci have to be packaged into a small number of chromosomes (mean
chromosome numbers are 11, 13, and 25 for invertebrates, vascular plants, and vertebrates,
respectively; [4]). Because crossovers leading to recombination occur on average only a
bit over once per generation within each chromosome arm [5,6], syntenic loci do not in
general assort independently and hence do not provide independent information about
evolutionary processes. This lack of independence creates pseudoreplication, which reduces
precision of genetic analyses, compared to a hypothetical scenario in which all genetic
markers are independent. Physical linkage limits precision of a wide range of common
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genetic indices that average results across individual loci, including measures of genetic
differentiation like FST.

A second kind of lack of independence also affects measures of linkage disequilibrium
(LD), which is the non-random association of alleles at different pairs of gene loci [7]. A
common measure of LD is r2 [8], which is the squared correlation coefficient between
genotypes at the two loci involved. In a dataset with L loci, these can be stored in a
triangular matrix with L(L − 1)/2 ≈ L2/2 different pairs of loci. Of these pairs, only L/2
are completely independent because they do not share any loci. In general, any pair of
loci, i,j, will share one locus with 2(L − 2) other pairs, so the only truly independent set is
[r1,2

2, r3,4
2, . . . rL−1,L

2]. In the example shown in Table 1, with L = 10 loci and 45 locus pairs,
any given pair shares one locus with 2 × 8 = 16 other pairs. The r2 values for pairs that
share one locus (e.g., ri,j

2 and ri,k
2) will be positively correlated and hence will not provide

independent information about LD.

Table 1. The upper triangle of the matrix below shows the 10 × 9/2 = 45 different pairs of L = 10 gene
loci. Considering the pair [2,9] (•), there are 16 other pairs (denoted by ‘X’) that share either locus 2
or locus 6, so r2 values for all these locus pairs are positively correlated. The other 28 locus pairs are
not correlated with [2,9], but many are correlated with each other. Similar entanglements apply to
every cell in this matrix.

Loci 1 2 3 4 5 6 7 8 9 10

1 O X O O X O O O O
2 X X X • X X X X
3 O O X O O O O
4 O X O O O O
5 X X X X X
6 O O O O
7 O O O
8 O O
9 O

10

In theory, pseudoreplication in LD could be quantitatively accounted for by spec-
ifying the relevant covariance matrix, but in practice, this is completely infeasible for
genomics-scale datasets. The covariance matrix for L loci has order L2 elements, but this
is not sufficient for quantifying this overlapping-pairs-of-loci problem, which requires
one to specify correlations of correlations. The relevant covariance matrix therefore has
order L4 elements, which rapidly becomes impossible to even contemplate for genomics-
scale datasets.

In their study of pseudoreplication in large genomics datasets, Waples et al. [10] took
a different approach, simulating many replicate datasets and measuring how rapidly the
sampling variance in mean r2, Var(E[r2]), declined as it was averaged over more and
more pairs of loci. If all the locus pairs were truly independent, the degrees of freedom
associated with mean r2 would be n = L(L − 1)/2, and Var(E[r2]) would be inversely
proportional to n. By quantifying Var(E[r2]) in their simulations, Waples et al. [10] were
able to calculate an effective degree of freedom (n′) and compare it to n to quantify the
magnitude of pseudoreplication. They found that for LD, the ratio n′/n increased with Ne
and the number of chromosomes and decreased as the number of loci increased; they also
found that reductions in the n′/n ratio were primarily due to the overlapping-pairs-of-loci
effect, with relatively little influence from physical linkage except when modeling species
with relatively few numbers of chromosomes.

Here, we consider whether the concept of entropy can potentially be useful for evalu-
ating pseudoreplication in studies of LD. Entropy metrics have previously been applied to
genetic data [11,12], and to genetics problems involving functional information, but not to
this specific problem—thus, this work adds to the growing body of literature comparing
entropy-based approaches to other methodology. In contrast with functional information,
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which quantifies the information needed to achieve some threshold or function [13,14], our
focus is on comparing two approaches for quantifying the information content of genomics
datasets. First, we consider unlinked loci, which are easy to simulate on a desktop com-
puter; this eliminates any lack of independence due to physical linkage, so any resulting
pseudoreplication is due to overlapping pairs of loci. Second, we focus on measures of
entropy to summarize the relationships among pairs of loci and variability in these relation-
ships. Among the various entropy indices, we focus on total correlation (TC; [15]), which
can be defined as the difference between two entropy measures:

TC(x) = ∑ H(xi)− H(x1, x2, . . . xn) (1)

where H(xi) is the information entropy of variable xi (locus pairs) and H(x1, x2, . . . xn) is
the joint entropy of the set [x1, x2, . . . xn]. TC(x) quantifies the amount of information that
is shared within a dataset—hence, a lack of independence, or pseudoreplication. The first
term in the above equation is the amount of information the variable set would contain
if everything were independent, and the second term is the amount of information the
variable set actually contains. We also consider entropy statistics summarizing H(x) as the
total variability or spread of a dataset [16]. Based on results from [10], we predict that TC
should be positively correlated with L and negatively correlated with Ne.

2. Methods
2.1. Simulations

To investigate the utility of using entropy-based metrics to quantify the informa-
tion about LD in genomics data, we created large simulated datasets from a monoecious
population with random mating (including random selfing), using custom scripts in R
4.3.1 [17]. Each simulated dataset involved a different random, multi-generation pedigree;
we initialized a random population consisting of Ne parents, with each individual being
heterozygous for each bi-allelic locus. We then projected these individuals forward for
6 generations by producing a constant number of Ne offspring per generation, allowing
individuals to reproduce randomly and alleles of offspring to be generated via Mendelian
segregation. After the 6-generation burn-in period, which is sufficient to establish an
equilibrium level of LD for unlinked loci [18], we then generated a sample of S = 50 or
100 offspring from the last generation of parents and removed monomorphic loci.

With single simulated datasets, one can calculate covariance matrices across loci,
but those covariance matrices do not enable us to calculate the desired correlations of
correlations. To calculate these higher-order correlations, we generated replicated datasets
(n = 50) to provide an additional dimension, resulting in arrays of r2 (L, L, 50). With
pedigrees or loci not being shared across replicates, there is the potential for pairwise
correlations between loci to be eroded. To avoid these issues, each replicate involved
sampling with replacement from the pool of potential offspring in the last generation. We
next generated covariance matrices Σ and correlation matrices R across the L(L − 1)/2 pairs
of loci.

To model infinite Ne, we skipped the burn-in period, and, for each individual, drew
genotypes at each locus randomly and independently, based on the parametric population
allele frequencies. This generated single-locus genotypes in Hardy–Weinberg proportions,
with random LD generated by sampling a finite number of offspring.

2.2. Quantifying Entropy

As a first entropy measure, we calculated Watanabe’s total correlation, TC(x), to
summarize the interdependence among pairs of loci [15]. This measure is calculated as

TC(x) = ∑ ln(λi)− ln(|Σ|) (2)

where the first term is the sum of logged eigenvalues from the covariance matrix, and
the second term represents the log of the determinant (also calculated as the product of
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eigenvalues). In addition, we calculated entropy measures summarizing the variability in
the covariance between pairs of loci. Assuming a multivariate normal distribution, this is
calculated as

H(x) =
L
2
(1 + ln(2π) +

1
2

ln(|Σ|) (3)

Ref. [16], where Σ represents the covariance matrix estimated across the L(L − 1)/2
pairs of loci. This metric can be used to quantify the total information or spread of the
L-dimensional space that a set of variables contains. Because covariance-based entropy is
scale-dependent, we also calculated the same entropy measure on the correlation matrix
R, as an invariant measure. While both TC(x) and H(x) are functions of the determinant
of Σ or R, they represent different properties of the data—TC(x) quantifies dependency
among loci, while H(x) is analogous to variation or uncertainty in a dataset [16].

There are several challenges in computing both entropy measures for large genetics
datasets, as (1) the dimensionality of Σ increases with L2, and (2) the correlations for
many pairs of loci are very close to 0 (resulting in numerical instability). For each set of
simulations, we used the RSpectra package [19] to calculate the first 500 eigenvalues, λ,
corresponding to the eigen decomposition of Σ. We then calculated the log determinant

as
∣∣∣∣^
Σ

∣∣∣∣ = np

∑
i=1

λi, where np represents the number of positive eigenvalues. We used
∣∣∣∣^
Σ

∣∣∣∣ to

calculate H(x) and approximated

TC =

∣∣∣∣^
Σ

∣∣∣∣(1 −
np

L

)
(4)

To understand the effects of changing population sizes or the dimension of genomics
datasets, we conducted a sensitivity analysis across 2 orders of magnitude of values of
Ne (10–1240), an eightfold range of number of loci (L = 25–200), and a twofold range in
size of the offspring population (S = 50–100; Table 2). Generating replicates or datasets
was generally not computationally intensive for these sets of parameters; however, we
did find computational challenges on desktop and laptop computers as the number of
loci exceeded 200 (this directly affects the dimensionality of Σ). The suite of simulation
parameters explored is given in Table 2.

2.3. Statistical Modeling

To evaluate the relative importance of the number of loci, Ne, and the number of offspring
on TC(x) and H(x), we analyzed the simulation output in a regression framework. Given
the skewed distribution of TC(x) and H(x) in our simulated data, we used log (entropy) as
the response variable in our regressions. Because H(x) is negative, we used log(−H(x)) as
a response for models of H(x). We considered models using either raw or log-transformed
predictor variables, and also evaluated models with linear interaction terms between loci,
Ne, and the number of offspring. Models were compared using AIC [20] and by examining
the statistical significance of estimated coefficients. All regression modeling was performed
using the R packages ‘stats’ (R Core Development Team 2023) and ‘glmmTMB’ [9]. Code and
simulated data are provided in our Github repository for this paper, https://github.com/
ericward-noaa/ward-waples-entropy (accessed on 1 August 2024).

3. Results

Because of the eigenvalue calculation, we found more computational challenges in cal-
culating TC(x) than H(x) for large matrices (our simulation scenarios with 200 loci involved
calculating entropy measures on matrices with 40,000 rows/columns and 1.6 × 109 elements).

For linear models predicting log(TC) as a response, we found the most support for
a model that did not include interactions between predictors; while we found positive
associations with all covariates on TC, the effect (and statistical significance) was greatest
for the effect of numbers of loci (Table 3, Figure 1). Though this model is relatively simple, it
explains most of the variation in TC (R2 > 0.999). When fitting linear models to log(−H(x)),

https://github.com/ericward-noaa/ward-waples-entropy
https://github.com/ericward-noaa/ward-waples-entropy
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we again found the most support for not including interactions between variables. In
contrast to models of TC, models predicting H(x) did not appear to explain much of the
variation in the data (R2 < 0.12). Our simulated summary statistics of H(x) appeared more
variable in general (Figure 1).
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effect of loci (L) and factor levels for Ne, the effect of loci is significant for both 50 (p < 0.01) and
100 offspring (p < 0.0001).

Contrary to our hypothesis, we found little effect of Ne on TC (Table 4). As a covariate,
the effect of Ne was not significant (Table 2), and influences of Ne on TC are indistin-
guishable in Figure 1. The simulations modeling infinite Ne were included to provide a
reference point for evaluating the influence of effective population size. Waples et al. [10]
found that when they modeled infinite Ne, the observed Var(E[r2]) agreed closely with
the expected variance, assuming all pairs of loci were completely independent—hence,
pseudoreplication disappeared. We therefore hypothesized that as Ne increased, TC should
have converged on the value for infinite Ne. Modest support for this hypothesis was found
for results for 200 loci in the top-right panel in Figure 2: the ratio TC/TC∞ was ~1.0 for the
largest Ne (1280), it was the lowest (~0.95) for the smallest Ne (10), and results for the other
modeled effective sizes were mostly in the hypothesized order.

Table 2. Parameters used in our simulation experiment; in addition to these parameters, we fixed the
number of generations (n = 6) and replicates (n = 50).

Parameter Values

Ne 10, 20, 40, 80, 160, 640, 1280

Offspring (S) 50, 100

Loci (L) 25, 50, 100, 200
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Figure 2. Relationship between scaled entropy measures (TC and H(x), Y axes) in our simulation
study and the number of loci (L) (X axes; note the log scale). Results are presented for different values
of Ne (colors) and numbers of offspring (facets). On the Y axes, entropy measures for finite Ne are
scaled in comparison to results for infinite Ne. If H(x) is modeled with a linear model with a common
effect of loci (L) and factor levels for Ne, the effect of loci is significant for 100 offspring (p < 0.008) but
not for 50 offspring (p < 0.07).

Table 3. Estimated predictors in linear models predicting total correlation, TC. The R2 from the model
is >0.99. L is the number of loci and S is the number of offspring sampled.

Coefficient Estimate Std. Error t value Pr(>|t|)

Intercept 2.262085 0.205537 11.006 3.43 × 10−15

log(L) 2.211015 0.019244 114.891 <2 × 10−16

log(Ne) 0.006825 0.009066 0.753 0.455

log(S) 0.050063 0.043032 1.163 0.25

Table 4. Correlation between total correlation, TC(x), the uncertainty represented by H(x), Ne, the
number of loci (L), and the number of offspring sampled (S).

TC(x) H(x) L Ne S

TC(x) 1.000 0.442 0.981 0.004 0.015

H(x) 0.442 1.000 0.514 −0.148 0.065

L 0.981 0.514 1.000 0.000 0.000

Ne 0.004 −0.148 0.000 1.000 0.000

S 0.015 0.065 0.000 0.000 1.000
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4. Discussion

The application of entropy-based summary statistics of pseudoreplication offers new
insights into the nature of genetic data derived from genomics datasets. Entropy has the
potential to serve as a more nuanced measure of the information contained within a dataset,
capturing not just the amount but also the structure of genetic variation. Results from
our simulation study confirm that total correlation (TC) increases with the number of loci,
consistent with the results from [10]. This positive correlation underscores the challenges
faced when attempting to interpret LD measures in the presence of extensive genomic
data. As the number of loci increases, the assumption of independence among locus pairs
becomes increasingly unrealistic, leading to inflated estimates of shared information, or
pseudoreplication. This problem is compounded by the fact that entropy measures also
become more challenging to compute as the dimensionality of the data increases, resulting
in computational intractability for datasets at the higher end of the genomic scale.

Our study also highlights the nuanced impact of effective population size (Ne) on the
degree of pseudoreplication. The effects of Ne in our simulations appear largest for smaller
populations and small numbers of loci (L); however these combinations of parameter values
also result in the most variability. For larger populations or scenarios with more than 100
loci, the effect of small samples diminishes and the effect of Ne becomes much smaller.
These results demonstrate a complex—and nonlinear—effect of Ne, suggesting that the
relationship may also be influenced by other factors such as the number of chromosomes.

In practical terms, our results suggest that when dealing with large genomic datasets,
researchers need to be cautious in their interpretation of LD and related statistics. Tradi-
tional measures that assume independence among loci may be misleading, and the effective
degrees of freedom associated with mean r2 may be substantially lower than the nominal
number of locus pairs—entropy-based approaches represent one potential approach for
better estimating the effective degrees of freedom. We considered two related entropy-
based measures to quantify the effect of pseudo-replication. While entropy-based metrics
such as TC and H(x) provide valuable tools for quantifying pseudoreplication, their utility
may be limited in many real world applications by computational feasibility. Both metrics
considered in our analysis rely on the eigen decomposition of very large sparse matrices;
the spectral decomposition approaches used here may be applied to larger datasets; how-
ever the computational storage of large pairwise matrices (larger than 40,000 × 40,000) on
desktop computers may become a greater limitation. Alternative solutions to increasing
CPU or RAM include performing computations on high-performance computing clusters
or utilizing graphics processing units (GPUs); such solutions were not explored in our
analyses but may be useful for future extensions. Many other entropy-based metrics have
also been advanced in fields with large datasets, such as machine learning [21], and similar
approaches may be useful for genomics datasets.

The simulation assumptions used in our study were designed to be simplistic, but
could be extended to other case studies. Examples include more realistic two-sex models, or
case studies involving more complicated mating scenarios. Despite the increased realism,
these advances will not solve the dimensionality constraints. A more promising and critical
future area of research is developing efficient algorithms and computational techniques
to calculate metrics such as TC on datasets with thousands or more loci. Leveraging
computational innovations from fields such as data science and could bridge the current
capability gaps, and also might lead to scalable entropy-based methodologies that could
transform the landscape of genomic analysis, affecting diverse biological disciplines, from
ecology to medicine.
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