Increasing frequency of extremely severe cyclonic storms over the Arabian Sea
-
2017
Details
-
Journal Title:Nature Climate Change
-
Personal Author:
-
NOAA Program & Office:
-
Description:In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—defined by the WMO as tropical storms with lifetime maximum winds greater than 46 m s−1—were first observed over the Arabian Sea (ARB), causing widespread damage. However, it is unknown to what extent this abrupt increase in post-monsoon ESCSs can be linked to anthropogenic warming, natural variability, or stochastic behaviour. Here, using a suite of high-resolution global coupled model experiments that accurately simulate the climatological distribution of ESCSs, we show that anthropogenic forcing has likely increased the probability of late-season ECSCs occurring in the ARB since the preindustrial era. However, the specific timing of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is further shown that natural variability played a minimal role in the observed increase of ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in the ARB, with corresponding socio-economic implications.
-
Source:Nature Climate Change, 7(12), 885-889
-
DOI:
-
ISSN:1758-678X ; 1758-6798
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Submitted
-
Main Document Checksum:urn:sha-512:f01e178d0824c13344cbcafe329517f1eb8fcf1eee913fdcd63d6ac90b35d5e78a1add2fd89f5bf40c1634f22395fad60c6c30d8bb391f56b16fa8c056490c8a
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like