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In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—tropical storms 1 

with lifetime maximum winds greater than 46 m s−1 (WMO1)—were first observed over the 2 

Arabian Sea (ARB), causing widespread damage2. However, it is unknown to what extent 3 

this abrupt increase in post-monsoon ESCSs can best be linked to anthropogenic warming, 4 

natural variability, or stochastic behaviour. Here, using a suite of high-resolution model 5 

experiments3, we show that anthropogenic forcing has likely increased the probability of 6 

late-season ECSCs occurring in the ARB since the preindustrial era. However, the timing 7 

of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is 8 

further shown that natural variability played a minimal role in the observed increase of 9 

ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in 10 

the ARB, with corresponding socio-economic implications. 11 

 12 

 In 2014, the first ESCS (Cyclone Nilofar) was recorded in the ARB (west of 77.5ºE in the 13 

North Indian Ocean) during the post-monsoon season (October–December)(Fig. 1a). In the 14 

following year, two more ESCSs (Cyclones Chapala and Megh) were again observed during the 15 

post-monsoon season in the ARB (Fig. 1a). This was the first instance that more than one ESCS 16 

was observed within one year in the ARB (Fig. 1b). These recent severe tropical storms in the 17 

ARB have attracted considerable attention from the scientific community, as well as broader 18 

society, in terms of the extent to which they were made more likely by anthropogenic forcing, as 19 

opposed to intrinsic natural variability. A recent study4 reported that the increase in 20 

anthropogenic black carbon and sulphate emissions might have led to the increase in mean storm 21 

intensity in the ARB through a weakening of vertical wind shear (Vs, wind speed difference 22 

between the upper and lower troposphere), especially during the pre-monsoon season of April–23 
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June. The suggested physical mechanism behind this change is that the observed increase in 24 

anthropogenic aerosols in the lower troposphere leads to a reduction in surface insolation in the 25 

North Indian Ocean, which in turn leads to a decrease in the meridional gradient of sea surface 26 

temperature (SST). This decreased meridional gradient further leads to a weakening of the South 27 

Asian Monsoon circulation through the thermal wind relationship, which causes a weakening of 28 

the Vs. On the other hand, another study5 argued that the recent increase in pre-monsoon tropical 29 

storm intensity in the ARB is mainly being caused by an earlier onset of the South Asian 30 

Monsoon, affected by a reversal in the phase of the Pacific Decadal Oscillation (PDO) around 31 

1997. Overall, consensus has not been reached regarding the main cause of the recent increase in 32 

pre-monsoon storm intensity in the ARB. Alongside this debate, the recent unprecedented 33 

occurrence of ARB ESCSs in 2014 and 2015 calls for additional focus on the post-monsoon 34 

season. The observed tropical storm activity in the ARB shows a bimodal annual frequency 35 

distribution, peaking during the pre-monsoon and post-monsoon season6. However, the observed 36 

seasonal large-scale conditions are fundamentally different between the two seasons in terms of 37 

the direction of low-level wind and Vs (Supplementary Fig. 1). Therefore, the effect of 38 

anthropogenic forcing on storm activity could also be different between the two seasons. 39 

 Meanwhile, long-term analysis of the observed storm record is uncertain given a very 40 

limited period of reliable satellite-based data covering the ARB. There was no satellite that 41 

covered the entire ARB before 1998, and so the storm intensity might have been underestimated 42 

due to the oblique view offered by adjacent satellites7. However, Fig. 1b reveals that, even after 43 

1998, ESCSs were not observed in the post-monsoon season until 2014, drawing interest as to 44 

whether the increase is physically related to anthropogenic warming; indeed, several studies have 45 

consistently reported that anthropogenic global warming has increased the mean storm intensity8. 46 
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As a complement to the limited observational record, we use a suite of numerical climate 47 

model experiments to address the plausibility and causes of the recent increase in post-monsoon 48 

ESCSs in the ARB. The ARB poses a challenge for numerical climate modelling, not only 49 

because of its relatively small domain size, but also the complex climatic conditions and 50 

influences in the region and the general rarity of tropical storm genesis in the ARB. On average, 51 

about 1.7 (0.6 during the pre-monsoon season and 0.9 during the post-monsoon season) tropical 52 

storms (lifetime maximum surface wind speed ≥17.5 m s−1) formed in a year in the ARB during 53 

1979–2015, which is only about 2% of the storm frequency globally. Thus, models with high 54 

resolution, fidelity in their climate simulations, and ability to produce multi-centennial 55 

integrations for the provision of a satisfactory signal-to-noise ratio, are required. However, the 56 

limited reliability of observations makes it difficult to evaluate model simulations in terms of the 57 

interannual variation of storm frequency at the multi-decadal time scale. Although many state-of-58 

the-art models succeed in simulating the observed year-by-year variation of tropical storm 59 

frequency in the North Atlantic3,9–10, they commonly fail to reproduce the equivalent in the North 60 

Indian Ocean10–12. This failure may be due to the imperfect representation of variability in 61 

models, the inhomogeneous observed storm record, difficulties with tropical cyclone (TC) 62 

detection methods in distinguishing TCs from low-pressure systems (e.g., monsoon 63 

depressions)13, or the limited predictability of TC frequency over the region. Another problem 64 

with model simulations is that the horizontal resolution of the climate models is still insufficient 65 

to reproduce observations of intense storms. Several climate models have been used to conduct 66 

future climate projections, and the results commonly suggest that the frequency of weak (intense) 67 

storms will decrease (increase) globally in the future8. However, most models underestimate the 68 

observed TC intensity, especially for major hurricanes (maximum surface wind speed ≥50 m 69 
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s−1)8. Moreover, little is known about the change in TC activity over the ARB. Murakami et al.12 70 

conducted multi-physics and multi-SST ensemble climate projections under the IPCC A1B 71 

scenario14 using a 60-km-mesh atmospheric model. The results showed that the mean locations 72 

of tropical storms may shift westwards over the North Indian Ocean during the post-monsoon 73 

season, leading to an increased (decreased) frequency of tropical storms over the ARB (Bay of 74 

Bengal). However, little is known about possible change in intense storms like ESCSs. The 75 

present study aims to bridge that gap. 76 

We recently developed a new high-resolution global coupled model at the Geophysical 77 

Fluid Dynamics Laboratory called HiFLOR that broadly reproduces the observed year-by-year 78 

variations of the frequency of Category 4 and 5 (C45) hurricanes (maximum wind speed ≥58 m 79 

s–1) in the North Indian Ocean (r≈0.4) as well as in other ocean basins3,15. Moreover, HiFLOR 80 

simulates the climatological spatial distribution of ESCSs over the ARB reasonably well, as 81 

compared with observations, based on a present-day control simulation (Supplementary Fig. 2). 82 

Therefore, it is feasible to investigate the factor(s) responsible for the recent increase in ESCSs 83 

using HiFLOR. In this study, through a suite of climate simulations, we specifically investigate if 84 

the recent observed increase in ESCSs is due to anthropogenic global warming or natural 85 

variability. 86 

To estimate the impact of anthropogenic forcing on the frequency of ESCSs over the 87 

ARB, we conducted a series of control simulations prescribing past levels of anthropogenic and 88 

natural forcing (Methods). Specifically, we conducted 1860Cntl, 1940Cntl, 1990Cntl, and 89 

2015Cntl experiments in which anthropogenic forcing was fixed at the years of 1860, 1940, 90 

1990, and 2015, respectively (Methods). Figure 2 shows the projected change in the mean ESCS 91 

density for each experiment and for each season relative to 1860Cntl. Although the model 92 
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response in 1940Cntl is smaller and not statistically significant for all seasons, the 1990Cntl and 93 

2015Cntl results show significant increases in the occurrence of ESCSs over the ARB during the 94 

post-monsoon season only. These projected increases coincide with the recent observed increase 95 

in ESCSs over the ARB during the post-monsoon season. 96 

Following Murakami et al.16, 17, we estimated the potential influence of anthropogenic 97 

forcing on the frequency of occurrence of ESCSs by computing the empirical probability of 98 

exceedance (Methods). In this study, we focus on P(1), representing the probability of 99 

occurrence of a year with one or more ESCSs during the post-monsoon season over the ARB. 100 

The gray bars along with the box plots in Fig. 3a clearly indicate a projected significant increase 101 

in P(1) for 1990Cntl and 2015Cntl relative to 1860Cntl and 1940Cntl. The fraction of 102 

attributable risk (FAR, Methods) for 2015Cntl and 1990Cntl is 64% and 57%, respectively, 103 

suggesting that the increase in the probability of occurrence is attributable to the increase in 104 

anthropogenic forcing. Note that we repeated the same analysis but for weak storms (< 46 m s−1), 105 

and the results showed no significant changes among the control simulations during the post-106 

monsoon season (Supplementary Fig. 3). 107 

We further computed the conditional P(1)—namely, P(1|Y±) under any phase of a natural 108 

mode of variability (i.e., Y+ or Y−)—to estimate impact of natural variability on the changes in 109 

P(1) (Methods). The colored bars in Fig. 3b reveal the extent to which the different phases of 110 

natural variability exert variation in the probability of exceedance. Overall, we obtained diverse 111 

and inconsistent results among the control experiments. For example, 2015Cntl (1940Cntl) 112 

shows the highest probability during the positive (negative) phase of the PDO. The reason for 113 

these diverse results—possibly related to whether the 200–300 year records are short enough to 114 

alias the noise and the impact of these internal climate modes on ESCS activity being weak, or 115 
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whether the impact of the PDO is sensitive to the base state—remains unclear. The relatively 116 

shorter colored bars for the longest 600-year 1860Cntl (Fig. 3b) lend weight to the hypothesis 117 

that the impact of these potentially predictable modes of climate variability on ESCS activity is 118 

weak, suggesting that natural variations in post-monsoon ESCS activity may be largely 119 

unpredictable. However, overall, we could not find any clear and robust dependence of the 120 

probability of occurrence on these modes of natural variability. 121 

 To address the physical mechanism behind the projected increase in ESCSs in the post-122 

monsoon season, we preliminarily investigated several large-scale parameters associated with 123 

storm activity. Among them, the projected changes in SST and Vs appear to be responsible for 124 

the increase in ESCSs. Figure 4 highlights a marked sea surface warming over the ARB (Fig. 125 

4a), with larger warming relative to the mean change in the tropics (RSST, Supplementary Fig. 126 

4a), as well as a significant weakening of Vs over the ARB (Fig. 4b). Several previous studies 127 

have reported projected increases in TC density and maximum potential intensity where the SST 128 

increases more than in other open oceans10,18–21. Similar spatial patterns of the projected changes 129 

in the large-scale parameters could also be obtained through future projections with CMIP3 130 

models19 and CMIP5 models22. Figures 4c and d show the ensemble mean of the projected 131 

changes in SST (Fig. 4c) and Vs (Fig. 4d) in 22 CMIP5 models under the RCP8.5 (2006–2025) 132 

scenario relative to the pre-industrial control experiments (500 years). The CMIP5 models show 133 

larger warming over the ARB (Supplementary Fig. 4b) that is consistent with the projections by 134 

HiFLOR. A larger ARB warming relative to other open oceans has also been reported in century-135 

scale observations18, in which the largest projected and observed trends in relative SST and 136 

potential intensity were found over the tropical part of this region. Moreover, the CMIP5 models 137 

also show relatively weaker Vs for the region’s increase in ESCSs during the post-monsoon 138 
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season (Fig. 4d). Similar changes are also projected in the future by the CMIP5 models (Figs. 4e 139 

and f), implying a continuing increase in ARB ECSCs during the post-monsoon season due to 140 

weaker shear and warmer SSTs in the future. Similar changes in SST and RSST are also 141 

projected during the pre-monsoon season (Supplementary Figs. 4d–f, 5, 6a and b). However, we 142 

could not find any significant decreases in Vs during the pre-monsoon season over the ARB 143 

domain where ESCSs increased (Supplementary Figs. 5 and 6c). Consequently, the pre-monsoon 144 

season shows a smaller projected increase in P(1) relative to the post-monsoon season 145 

(Supplementary Fig. 7). 146 

It is possible that the projected changes in Vs are related to the changes in either the 147 

strength or the timing of the onset/retreat of the Indian monsoon. By analyzing the changes in the 148 

Indian monsoon circulation (Methods), we found that the projected weakening of the winter 149 

monsoon circulation is key for the weakening of Vs during the post-monsoon season. Previous 150 

literature has also reported that state-of-the-art climate models commonly project a weakening of 151 

the Indian monsoon circulation in experiments run with anthropogenic forcing23. On the other 152 

hand, we could not find any significant difference in the timing of monsoon onset or withdrawal 153 

(Supplementary Fig. 11), although IPCC23 reported that model agreement is high on an earlier 154 

onset and later retreat (i.e., longer duration) in future projections. Uncertainty remains in this 155 

regard. 156 

As reviewed above, Evan et al.4 reported that the recent increase in anthropogenic 157 

aerosols caused an increase in TC intensity over the ARB through a weakening of Vs. 158 

Accordingly, we investigated the influence of aerosols on the frequency of ESCSs. We 159 

conducted an additional idealized experiment in which the simulation settings were identical to 160 

those in the 2015Cntl, except the anthropogenic aerosols (i.e., black carbon, organic carbon, and 161 
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sulfate, etc) were prescribed at the 1860 level. The increase in aerosols causes a small increase in 162 

ESCSs [labeled as “2015 Cntl (1860Aero)” in Fig. 3], which is consistent with a previous study4. 163 

However, the projected impact of aerosols on ESCSs may be underestimated in the model 164 

because the model underestimates direct radiative forcing by aerosols over the ARB compared 165 

with observations, especially at the surface (Supplementary Fig. 12). Moreover, the model does 166 

not include indirect effects of aerosols, and so the aerosol forcing is of smaller amplitude than in 167 

observations. Further refinement of the model’s physics is necessary in the future to estimate the 168 

effect of aerosols on ECSCs with more precision. 169 

Overall, the suite of high-resolution model experiments carried out in this study indicate 170 

that anthropogenic global warming has increased the probability of post-monsoon ESCSs over 171 

the ARB, and is one of the major contributors to the recent (2014 and 2015) observations in this 172 

regard. The specific occurrence in those years, but not in other years in recent decades, reflects 173 

the interplay between climate change, climate variability and weather. However, the climate 174 

simulations do not show any consistent dependency on the phases of natural variability that we 175 

explored. Therefore, we believe that stochastic factors (i.e., “weather noise”) or unexplored 176 

modes of climate variability were key to the precise timing of these events. 177 

 178 
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Methods (On-Line) 197 

a. Observed data 198 

We used the U.S. Department of Defense Joint Typhoon Warning Center Best Track 199 

Database25, as archived in the International Best Track Archive for Climate Stewardship26, for 200 

the period 1998–2015. The 2016 TC data were complemented in this study by the best track data 201 

openly available on the Unisys Corporation website27. We also used the UK Met Office Hadley 202 

Centre SST product (HadISST1.1)28 as the observed SST. For the atmospheric data, the Japanese 203 

55-year Reanalysis (JRA-55)29 was utilized. 204 

 205 

b. Control experiments 206 

We generated a 600-year control climate simulation using HiFLOR by prescribing 207 

radiative forcing and land-use conditions representative of the year 1860 (1860Cntl). The fixed 208 

forcing agents for the control simulations were atmospheric CO2, CH4, N2O, halons, tropospheric 209 

and stratospheric O3, anthropogenic tropospheric sulfates, black and organic carbon, and solar 210 

irradiance. We also conducted 1940, 1990, and 2015 control simulations by prescribing the 211 

anthropogenic forcing fixed at the levels in those years. Due to limited computational resource, 212 

we ran 1940Cntl, 1990Cntl, and 2015Cntl for 200, 300, and 200 years, respectively. However, 213 

the basic conclusions were retained even we used 200 years for all the control simulations. 214 

 215 

c. Empirical probability of exceedance and FAR 216 

To estimate the potential probability of occurrence for the extreme ESCS-incidence years 217 

like 2015, we examined the empirical probability of exceedance for the frequency: 218 

 𝑃𝑃(𝑥𝑥) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛≥𝑥𝑥
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

 219 
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(1),                                                                              220 

where x is the seasonal mean number of ESCSs in a year. For the control experiments, we 221 

compute P(x) using all 600, 200, 300, and 200 simulated years for 1860Cntl, 1940Cntl, 1990Cntl 222 

and 2015Cntl, respectively. To elucidate the inter-centennial (inter-decadal) variability, we 223 

computed P(x) for each 50-year (19-year) period. 224 

The FAR30 was computed for the estimation of the impact of anthropogenic forcing. FAR 225 

is defined as follows: 226 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) =
𝑃𝑃(𝑥𝑥|𝐸𝐸1) − 𝑃𝑃(𝑥𝑥|𝐸𝐸0)

𝑃𝑃(𝑥𝑥|𝐸𝐸1)  227 

(2),  228 

where E1 is the anthropogenic warming condition (either for 1940Cntl, 1990Cntl or 2015Cntl), 229 

whereas E0 stands for natural forcing alone (1860Cntl). FAR ranges from –∞ (not attributable) 230 

to 100% (attributable). 231 

 To address the impact of any phase of natural variability, we can also estimate the 232 

conditional probability of exceedance P(x|Y±) under any phase of a natural mode of variability 233 

(i.e., Y+ or Y−). Here, we investigated the difference in P(1) between positive and negative phases 234 

of the El Niño–Southern Oscillation (ENSO; based on the Niño-3.4 index), Pacific Meridional 235 

Mode (PMM)31, PDO32, and Indian Ocean Dipole (IOD)33. These indices were selected because 236 

they may potentially influence the frequency of occurrence of ESCSs, based on the SST 237 

regression map (Supplementary Fig. 8). The detailed computations for these indices are 238 

documented in Murakami et al.16,17. In simple terms, ENSO represents the interannual variation 239 

of tropical eastern Pacific surface warming concurrent with basin-wide warming in the Indian 240 

Ocean; PMM represents the interannual variation of SST warming/cooling over the subtropical 241 
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eastern Pacific, whereas the PDO represents the interannual and decadal variation; and the IOD 242 

represents the interannual variation of the meridional SST contrast in the Indian Ocean. We 243 

defined a positive (negative) phase of natural variability when the index was greater than or 244 

equal to +0.75σ (less than or equal to −0.75σ). The other years were defined as neutral years. 245 

P(x|Y±) was computed using the years under each phase. 246 

 247 

d. Projected changes in the Indian monsoon circulation 248 

The projected decrease in Vs may be related to the changes in the strength or the onset of 249 

the Indian monsoon. Supplementary Fig. 9 clarifies the changes in the lower/upper tropospheric 250 

winds during October–December between 1860Cntl and 2015Cntl. October–December is the 251 

beginning of the South Indian winter monsoon as characterized by northeasterly (southwesterly) 252 

winds in the lower (upper) troposphere over the ARB (Supplementary Figs. 1d and e). The 253 

projected difference between 2015Cntl and 1860Cntl indicates a weakening of the winter 254 

monsoon circulation: a southwesterly (northeasterly) anomaly in the lower (upper) troposphere 255 

over the ARB (Supplementary Figs. 9c–d), which leads to a weakening of Vs. On the other hand, 256 

April–June is the transition season from winter monsoon to summer monsoon, as characterized 257 

by southwesterly winds in the lower troposphere over the ARB (Supplementary Fig. 1a), which 258 

is the opposite to October–December (Supplementary Fig. 1d). The projected difference between 259 

2015Cntl and 1860Cntl shows southwesterly flow in the lower troposphere during April–June 260 

(Supplementary Fig. 10c). Unlike October–December, the direction of wind change is along the 261 

climatological mean wind direction (Supplementary Figs. 10a and c). Moreover, there is less 262 

change in the wind in the upper troposphere over the region where ECSCs develop during April–263 
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June (Supplementary Fig. 10d), which is one of the major factors for the less pronounced 264 

changes in Vs during April–June relative to October–December (Supplementary Fig. 6c). 265 

There are various indices that can be used to measure the Indian monsoon. We used the 266 

Dynamic Indian Monsoon Index (DIMI) of Wand & Fan34. The index is computed by the area-267 

mean differences in zonal wind at 850hPa between region A (5–15°N, 40–80°E) and B (20–30°N, 268 

70–90°E), denoted in Supplementary Fig. 9a. The index is proportional to circulation strength, 269 

with a positive (negative) value meaning a summer (winter) monsoon phase. We computed the 270 

DIMI using the daily data for each 2015Cntl and 1860Cntl run. Also, the DIMI was smoothed 271 

with a 15-day running average. Supplementary Fig. 11 shows the smoothed climatological daily 272 

DIMI by 2015Cntl (red) and 1860Cntl (blue), separately. The figure indicates a weakening of 273 

both the summer Indian monsoon and winter monsoon from 1860Cntl to 2015Cntl. Although the 274 

projected DIMI change is significant during the post-monsoon season (October–December), 275 

there is no significant difference at 95% confidence level in the index during the pre-monsoon 276 

season (April–June) (Supplementary Table 1). The change of sign occurs almost at the same time 277 

between 1860Cntl and 2015Cntl, indicating the monsoon onset (or withdrawal) occurs almost at 278 

the same time in these experiments (Supplementary Fig. 11). 279 

 280 

e. Data availability 281 

The source code of the climate model can be found at  https://www.gfdl.noaa.gov/cm2-5-282 

and-flor/. The data that support the findings of this study are available from the corresponding 283 

author upon request. 284 

285 

https://www.gfdl.noaa.gov/cm2-5-and-flor/
https://www.gfdl.noaa.gov/cm2-5-and-flor/
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List of Figures 378 

FIG. 1: Observed ESCSs. (a) Observed ESCSs [Nilofar (blue), Chapala (green), and Megh 379 

(black)] during the post-monsoon season in 2014 and 2015, along with the observed linear trend 380 

in SST (K per 50 years; shading). (b) Observed number of ESCSs over the ARB for each month 381 

for the period 1998–2016. 382 

 383 

FIG. 2: Projected changes in the seasonal mean density of ESCSs. Projected changes in the 384 

seasonal mean density of ESCSs by 1940Cntl relative to 1860Cntl during the (a) pre-monsoon 385 

season (Apr–Jun), (b) peak monsoon season (Jul–Sep), and (c) post-monsoon season (Oct–Dec). 386 

(d–f) As in (a–c), but for 1990Cntl. (g–i) As in (a–c), but for 2015Cntl. Cross marks indicate the 387 

projected change relative to 1860Cntl is statistically significant at the 99% confidence level or 388 

above (boot strap method proposed by Murakami et al.24). Units: 100 × number year–1. The black 389 

box highlights the domain of significant change in the post-season over the ARB. 390 

 391 

FIG. 3 Projected probability of exceedance of ESCSs over the ARB during October–392 

December for each experiment. (a) P(1), denoting the probability of occurrence of a year with 393 

the ESCS number greater than or equal to one during October–December, obtained by each 394 

control experiment using all simulation years (gray bars). The box plots represent uncertainty in 395 

P(1). The boxes represent the range of the 10% and 90% quantiles of P(1) computed from 50-396 

year periods; the horizontal lines show the median value; and the dashed bars show the 10% and 397 

90% quantiles computed from 19-year periods. Red dots represent the FAR relative to 1860Cntl. 398 

(b) Gray bars are the same as in (a). Colored bars show the range of conditional P(1) induced by 399 

natural variability. The marks +, – and N indicate P(1) under the condition of a positive phase, 400 
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negative phase, and neutral phase of natural variability, respectively. Evaluated natural 401 

variabilities are ENSO (blue), PMM (orange), PDO (green), and IOD (red). A positive (negative) 402 

phase is defined as when a climate index is greater than or equal to +0.75 (less than or equal to 403 

−0.75) standard deviation. Units: %. 404 

 405 

FIG. 4: Projected changes in seasonal mean SST and Vs. (a) Projected change in seasonal 406 

mean SST [K] by 2015Cntl relative to 1860Cntl for October–December. (b) As in (a), but for Vs 407 

[m s−1]. (c, d) As in (a, b), but for the ensemble mean of 22 CMIP5 models under the RCP8.5 408 

scenario (2006–2025) relative to those of the pre-industrial control experiments (500 years). (e, 409 

f) As in (c, d), but for the mean difference between 2080–2099 and 2006–2025 projected by 36 410 

CMIP5 models under the RCP8.5 scenario. The green rectangle is the domain over the ARB 411 

where ESCSs increased. 412 
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during the post-monsoon season in 2014 and 2015, along with the observed linear trend in SST (K per 50 

years; shading). (b) Observed number of ESCSs over the ARB for each month for the period 1998–2016. 
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FIG. 2: Projected changes in the seasonal mean density of ESCSs. Projected changes in the 

seasonal mean density of ESCSs by 1940Cntl relative to 1860Cntl during the (a) pre-monsoon season 

(Apr–Jun), (b) peak monsoon season (Jul–Sep), and (c) post-monsoon season (Oct–Dec). (d–f) As in 

(a–c), but for 1990Cntl. (g–i) As in (a–c), but for 2015Cntl. Cross marks indicate the projected change 

relative to 1860Cntl is statistically significant at the 99% confidence level or above (boot strap 

method proposed by Murakami et al.24). Units: 100 × number year–1. The black box highlights the 

domain of significant change in the post-season over the ARB. 
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FIG. 3: Projected probability of exceedance of ESCSs over the ARB during October–December 

for each experiment. (a) P(1), denoting the probability of occurrence of a year with the ESCS 

number greater than or equal to one during October–December, obtained by each control experiment 

using all simulation years (gray bars). The box plots represent uncertainty in P(1). The boxes 

represent the range of the 10% and 90% quantiles of P(1) computed from 50-year periods; the 

horizontal lines show the median value; and the dashed bars show the 10% and 90% quantiles 

computed from 19-year periods. Red dots represent the FAR relative to 1860Cntl. (b) Gray bars are 

the same as in (a). Colored bars show the range of conditional P(1) induced by natural variability. The 

marks +, – and N indicate P(1) under the condition of a positive phase, negative phase, and neutral 

phase of natural variability, respectively. Evaluated natural variabilities are ENSO (blue), PMM 

(orange), PDO (green), and IOD (red). A positive (negative) phase is defined as when a climate index 

is greater than or equal to +0.75 (less than or equal to −0.75) standard deviation. Units: %. 
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FIG. 4: Projected changes in seasonal mean SST and Vs. (a) Projected change in seasonal mean SST 

[K] by 2015Cntl relative to 1860Cntl, for October–December. (b) As in (a), but for Vs [m s−1]. (c, d) As 

in (a, b), but for the ensemble mean of 22 CMIP5 models under the RCP8.5 scenario (2006–2025) 

relative to those of the pre-industrial control experiments (500 years). (e, f) As in (c, d), but for the 

mean difference between 2080–2099 and 2006–2025 projected by 36 CMIP5 models under the RCP8.5 

scenario. The green rectangle is the domain over the ARB where ESCSs increased. 


