The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
On High and Extreme Wind Calibration Using ASCAT
-
2022
-
-
Source: IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-10, 2022, Art no. 4202210
Details:
-
Journal Title:IEEE Transactions on Geoscience and Remote Sensing
-
Personal Author:
-
NOAA Program & Office:
-
Description:Accurate high and extreme sea surface wind observations are essential for the meteorological, ocean, and climate applications. To properly assess and calibrate the current and future satellite-derived extreme winds, including those from the C-band scatterometers, building a consolidated high and extreme wind reference data set is crucial. In this work, a new approach is presented to assess the consistency between moored buoys and stepped-frequency microwave radiometer (SFMR)-derived winds. To overcome the absence of abundant direct collocations between these two data sets, the reprocessed Advanced Scatterometer (ASCAT)-A winds at the 12.5-km resolution, from 2009 to 2017, have been used to perform an indirect SFMR/buoy winds’ intercomparison. The ASCAT/SFMR analysis reveals an ASCAT wind underestimation for winds of above 15 m/s. SFMR measurements are calibrated using GPS drop-wind-sondes (dropsondes) data and averaged along-track to represent ASCAT spatially. On the other hand, ASCAT and buoy winds are in good agreement up to 25 m/s. The buoy high-wind quality has been confirmed using a triple collocation approach. Comparing these results, both SFMR and buoy winds appear to be highly correlated with ASCAT at the high-wind regime; however, they show a very different wind speed scaling. An SFMR-based recalibration of ASCAT winds is proposed, the so-called ASCAT dropsonde-scale winds, for use by the extreme wind operational community. However, further work is required to reconcile dropsonde (thus, SFMR) and buoy wind measurements under extreme wind conditions.
-
Keywords:
-
Source:IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-10, 2022, Art no. 4202210
-
DOI:
-
Format:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: