Ammonia emissions from biomass burning in the continental United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Ammonia emissions from biomass burning in the continental United States

Filetype[PDF-996.42 KB]



Details:

  • Journal Title:
    Atmospheric Environment
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study quantifies ammonia (NH3) emissions from biomass burning from 2005 to 2015 across the continental US (CONUS) and compares emissions from biomass burning with the US Environmental Protection Agency (EPA) National Emissions Inventory (NEI), the Fire Inventory from the National Center for Atmospheric Research (FINN) and the Global Fire Emissions Database (GFED). A statistical regression model was developed in order to predict NH3 emissions from biomass burning using a combination of fire properties and meteorological data. Satellite data were used to evaluate the annual fire strength and frequency as well as to calculate the total NH3 emissions across the CONUS. The results of this study showed the total fire number has decreased, while the total yearly burn area and the average fire radiative power has increased. The average annual NH3 emissions from biomass burning from this study, on a national scale, were approximately 5.4e8 ± 3.3e8 kg year−1. When comparing the results of this study with other emission inventories, it was found that ammonia emissions estimated by the NEI were approximately a factor of 1.3 lower than what was calculated in this study and a factor of 1.1 lower than what was modeled using the statistical regression model for 2010–2014. The calculated NH3 emissions from biomass burning were a factor of 5.9 and a factor of 13.1 higher than the emissions from FINN and the GFED, respectively. The modeled NH3 emissions from biomass burning were a factor of 5.0 and a factor of 11.1 higher than the emissions from FINN and the GFED, respectively. As the climate continues to change, the pattern (frequency, intensity and magnitude) of fires across the US will also change, leading to changes in NH3 emissions. The statistical regression model developed in this study will allow prediction of NH3 emissions associated with climate change.
  • Source:
    Atmospheric Environment, 187, 50-61
  • DOI:
  • ISSN:
    1352-2310
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1