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Abstract 
This study quantifies ammonia (NH3) emissions from biomass burning from 2005 to 

2015 across the continental US (CONUS) and compares emissions from biomass burning with 
the US Environmental Protection Agency (EPA) National Emissions Inventory (NEI), the Fire 
Inventory from the National Center for Atmospheric Research (FINN) and the Global Fire 
Emissions Database (GFED). A statistical regression model was developed in order to predict 
NH3 emissions from biomass burning using a combination of fire properties and meteorological 
data. Satellite data were used to evaluate the annual fire strength and frequency as well as to 
calculate the total NH3 emissions across the CONUS. The results of this study showed the total 
fire number has decreased, while the total yearly burn area and the average fire radiative power 
has increased. The average annual NH3 emissions from biomass burning from this study, on a 
national scale, were approximately 5.4e8 ± 3.3e8 kg year-1 . When comparing the results of this 
study with other emission inventories, it was found that ammonia emissions estimated by the 
NEI were approximately a factor of 1.3 lower than what was calculated in this study and a factor 
of 1.1 lower than what was modeled using the statistical regression model for 2010-2014. The 
calculated NH3 emissions from biomass burning were a factor of 5.9 and a factor of 13.1 higher 
than the emissions from FINN and the GFED, respectively. The modeled NH3 emissions from 
biomass burning were a factor of 5.0 and a factor of 11.1higher than the emissions from FINN 
and the GFED, respectively. As the climate continues to change, the pattern (frequency, intensity 
and magnitude) of fires across the US will also change, leading to changes in NH3 emissions. 
The statistical regression model developed in this study will allow prediction of NH3 emissions 
associated with climate change. 
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INTRODUCTION 
Ammonia (NH3) is an important base gas in the atmosphere (Battye et al., 2017, Aneja et 

al., 2008, Aneja et al., 1998). NH3 reacts with sulfuric, nitric and hydrochloric acids to form 
ammonium sulfate, ammonium bisulfate, ammonium nitrate and ammonium chloride which 
contribute to the formation of PM2.5 (particulate matter with diameter less than 2.5 micrometers) 
(Baek and Aneja, 2004; Baek et al., 2004; Davidson et al., 2012; Day et al., 2012; Chen et al., 
2014). There are many adverse health effects associated with exposure to elevated concentrations 
of fine particulate matter, such as chronic bronchitis, aggravated asthma, irregular heartbeat, 
other cardiovascular and respiratory issues and even death (Pope et al., 2002; Schwartz et al., 
2002; Pope et al., 2009; Kwok et al., 2013; Crouse et al., 2015; Lelieveld et al., 2015). Exposure 
to elevated PM2.5 concentrations is a major concern for human health and welfare due to the 
particles’ ability to penetrate deep into the respiratory tract. PM2.5 is also associated with several 
environmental impacts, such as reducing visibility and changing the earth’s radiational balance 
(Fan et al., 2005; Behera and Sharma, 2010a; Behera and Sharma, 2010b, Heald et al., 2012; 
Wang et al., 2012). Furthermore, gaseous NH3 may be deposited to the Earth’s surface, which 
leads to ammonification, eutrophication and a loss of biodiversity (Langford et al., 1992; 
Robarge et al., 2002; Galloway et al., 2004; Clark and Tilman, 2008; Janssens et al., 2010; Day 
et al., 2012; Holtgrieve et al., 2011; Phoenix et al., 2012; Erisman et al., 2013; Chen et al., 2014). 
Increased concentrations of NH3 can also lead to a decreased resistance to drought and frost 
damage (Robarge et al., 2002). In addition, NH3 plays a role in the formation of nitrous oxide, 
which is a major greenhouse gas (Bouwman, 1996). 

Major sources of atmospheric NH3 include NH3 based fertilizers, animal waste, and 
biomass burning, with intensely managed livestock and agricultural sources of NH3 contributing 
most to NH3 concentrations (Langford et al., 1992; Schlesinger and Hartley, 1992; Bouwman et 
al., 1997; Flechard and Fowler, 1998; Battye et al., 2003; Aneja et al., 2009; Zbieranowski and 
Aherne, 2012). While agriculture accounts for approximately 82% of all NH3 emissions on a 
national level, fires account for a total of about 10% of all ammonia emissions nationwide (2014 
NEI). NH3 is mainly emitted into the atmosphere during smouldering combustion, which occurs 
in slow, low-temperature fires without a flame (Langford et al., 1992; Nance et al., 1993; Goode 
et al., 2000; McMeeking et al., 2009; Akagi et al., 2010; Alves et al., 2011; Chen et al., 2014). 

Previous works have shown an overall increase in NH3 sources (Erisman et al., 2008) and 
atmospheric NH3 concentrations over the past several years (Saylor et al., 2015; Butler et al., 
2016; Yao and Zhang, 2016). While the overall increase in NH3 emissions cannot solely be 
attribute to fire activity, it is possible that biomass burning emissions of NH3 are contributing to 
the observed increase in ambient emissions. For example, Saylor et al. (2015) also observed 
unusually high concentrations of NH3 across the southeastern United States (US) during 2007, 
when fires were prevalent due to increased temperatures and widespread drought. Similarly, 
R’honi et al. (2013) observed NH3 concentrations were two orders of magnitude larger than 
background levels during the summer of 2010, which was the hottest and driest summer on 
record (until 2015), when wildfires ran rampant across Europe and Russia. Hot and dry 
conditions in the Mediterranean countries, Australia and the western United States have 
contributed to an increase in wildfire activity, thus increasing the emission of gaseous NH3, 
among other pollutants, into the atmosphere (Alves et al., 2011). The strength and frequency of 
fires are not only controlled by the properties of the fuel and the geography, but they are also 
influenced by weather and climate (Pyne et al., 1996; Liu et al., 2010). Therefore, changes in the 
earth’s climate will likely result in changes in fire activity. Higher temperatures and widespread 
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drought are expected to cause an increase in the number of observed wildfires across many 
regions, such as the southeastern United States, the northern great plains, the Pacific coast, the 
southwestern US and the southern Rockies (Pinol et al., 1998; Gillet et al., 2004; Reinhard et al., 
2005; Liu, 2006; Westerling et al., 2006; Alves et al., 2011; Litschert et al., 2012; Saylor et al., 
2015; Skibba, 2015). However, due to changes in relative humidity and wind speeds, the future 
fire potential in the northern Rockies and the northwestern United States may likely be reduced 
(Liu et al., 2013). On a global scale, wildfire potential is projected to increase as the climate 
changes, specifically in locations that are already prone to the occurrence of wildfires (Liu et al., 
2010). This increase in wildfire potential will then potentially lead to an increase in NH3 

emissions from biomass burning. 
Biomass burning is an important source of NH3 emissions, but the strength of the source 

remains poorly quantified (Alves et al., 2011; Chen et al., 2014). Therefore, the primary 
objective of this study is to quantify NH3 emissions from biomass burning (wildfires, agricultural 
burns and prescribed burns) from 2005 to 2015 across the continental US and compare against 
major emission inventories used in atmospheric models. The inventories compared in this study 
include the Fire Inventory from the National Center for Atmospheric Research (FINN v1.5, 
Wiedinmyer et al., 2011), the Global Fire Emissions Databases (GFED v4.1, with small fires; 
van der Werf et al., 2017), and the US Environmental Protection Agency (EPA) National 
Emissions Inventory (NEI). As described in Larkin et al. (2014), the US EPA NEI is produced 
every three years and includes state submitted data. For this study, the years 2011 and 2014 are 
NEI process years while the remaining years in this study are considered fire inventory data, 
which were compiled using a more limited set of inputs. Therefore, while the US EPA emissions 
data is referred to as NEI in this study, it is important to remember that only 2005, 2008, 2011 
and 2014 are NEI process years and the remaining years are based on EPA fire inventory data. 
Furthermore, a regression analysis, using forward stepwise regression, was completed in order to 
determine the best fitting model of NH3 emissions from biomass burning using a combination of 
in-situ and satellite (primarily NASA’s Terra and Aqua) observations. This work proposes a new 
methodology to project emissions of NH3 on a national scale, which would help society 
understand the implications of the changing climate and adequately prepare and/or prevent these 
changes. Furthermore, this methodology also provides a relatively simply approach to estimating 
past, present and future emissions based on readily accessible data (temperature and burn area). 

DATA & METHODOLOGY 
In order to compare the calculated fire emissions (discussed in the following section) 

with the fire properties (number of fires, fire radiative power, and fire brightness temperature) as 
well as to observe trends in the fire properties, the National Aeronautics and Space 
Administration’s (NASA) Fire Information for Resource Management System (FIRMS) was 
utilized to obtain archived fire locations, frequency and strength. This data was obtained from the 
MODIS sensor on NASA’s Earth Observing System satellites (Terra and Aqua) (Friedl et al., 
2010). The MODIS active fire product obtained (Collection 6, Giglio et al., 2016) uses a fire 
detection algorithm that uses a multispectral contextual approach to leverage the mid-infrared 
radiations emitted by fires (Davies et al., 2009). FIRMS delivers the MODIS fire data locations 
that represent the center of a 1 km pixel that is flagged by the algorithm as an area that contains 
at least one fire/hotspot within the pixel (Davies et al., 2009). The brightness temperature is 
calculated using the average intensity of infrared radiation at two wavelengths near 4 um for a 1 
km x 1 km pixel (Giglio et al, 2003; Giglio et al., 2016). In the Collection 6 MODIS active fire 
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product, the fire radiative power was derived using the Wooster, Zhukov, and Oertel (2003), 
Wooster et al. (2012) approach (Giglio et al., 2016). In order to ensure quality, only fire data 
with a confidence estimate greater than 33% (i.e. medium and high confidence fires) will be used 
in this study. 

Quantification of NH3 Emissions 
There are several methods that can be used to quantify emissions of pollutants (i.e. NH3) 

from biomass burning (i.e. van der Werf et al., 2003; Hoelzemann et al., 2004; Ito and Penner, 
2004;, van der Werf et al., 2014; Dennis et al., 2002; Langmann et al., 2009; Ichoku and Ellison, 
2014). In this study, ammonia emissions from biomass burning were calculated using the 
emission factor approach (Equation 1) equation adapted from Seiler and Crutzen (1980), 
Wiedinmyer et al. (2006), Wiedinmyer et al. (2011) and Oliveras et al. (2014): 

×𝐹𝐵×𝐸𝐹
𝑗 

(1) 𝐸
𝑖 

= 𝐵𝐴
(𝑥,𝑡) 

× 𝐵
(𝑥) 

where Ei is the emission of species i (in this case, NH3), BA is the area burned at time t and 
location x, B is the biomass loading at location x, FB is the fraction of that biomass burned in the 
fire and EFi is the emission factor of species i. In order to obtain the area burned (BA), the 
Moderate Resolution Imaging Spectroradiometer (MODIS) Burned Area product (MCD45, 
Collection 5.1), obtained from the University of Maryland’s website, was used. The burn area is 
determined by the MODIS algorithm that uses time series of the daily 500 m MODIS land 
surface reflectance data (Roy et al., 2002; Roy et al., 2005; Roy et al., 2008). The MODIS 
burned area product was validated by Roy et al. (2005) and then again by Roy and Boschetti 
(2009), who found that the MODIS product provided the most accurate burned area maps when 
compared with other products (i.e. L3JRC, GlobCarbon). The biomass loading (B), which is 
defined as the amount of biomass available that can be burned in each fire, was obtained from 
Table 1 in Wiedinmyer et al. (2006), which describes the total fuel loading assumptions for 
various land cover classifications based on the literature. In order to quantify the amount of 
biomass burned, it was first necessary to know the type of land being burned. Therefore, the 
Collection 5 MODIS Global Land Cover Type product for 2010 (MCD12Q1) was used to 
determine land type (Friedl et al., 2010; Channan et al., 2014). This database contains land cover 
classifications at a spatial resolution of 500m. This data was readily available from the MRLC 
website. This was then used to estimate the fraction of biomass burned (FB) within the fire using 
the methods used by Wiedinmyer et al. (2006) and Wiedinmyer et al. (2011), which were adapted 
from Ito and Penner (2004). In this method, areas with 60% or more tree cover are given an FB 
value of 0.3 for the woody fuel and 0.9 for herbaceous cover. Areas with 40-60% tree covers, the 
FB is 0.3 for woody fuels and the FB for herbaceous fuels can be calculated using the following 
equation (Equation 2): 

= e-0.13*FractionTreeCover FBherb (2) 
Finally, when the fraction of tree cover is less than 40%, no woody fuel is assumed to burn and 
an FB value of 0.98 is given for herbaceous fuels (Wiedinmyer et al., 2006; Ito and Penner, 
2004). The fraction of tree cover was obtained at a 1 km2 spatial resolution via the Advanced 
Very High Resolution Radiometer (AVHRR) Continuous Fields Tree Cover product, which was 
readily available from the University of Maryland (Defries et al., 2000). The emission factor 
(EF) for ammonia was obtained from Wiedinmyer et al. (2011), who classified the emission 
factors based on MODIS land use/land cover classification based on literature values (Akagi et 
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al. (2011) for the NH3 emission factors). Table 1 shows the emission factors used in this study, 
obtained from Wiedinmyer et al. (2011). 

Table 1. The biomass loading term (kg m-2) for each respective land classification type 
(Wiedinmyer et al., 2006) and the NH3 emission factor for each land classification type 
(Wiedinmyer et al., 2011). 

Land Classification 

Biomass 
Loading 

(kg per m2) 
(g 

NH3 Emission Factor 
per kg Biomass Burned) 

Barren 0.1 0.49 

Cropland 0.5 2.3 

Deciduous Broadleaf Forest 9.5 1.5 

Deciduous Needleleaf Forest 12 3.5 

Evergreen Broadleaf Forest 17 0.76 

Evergreen Needleleaf Forest 14 3.5 

Grasslands 1.1 0.49 

Mixed Forest 12 1.5 

Open Shrublands 4.3 1.2 

Closed Shrublands 4.3 1.2 

Permanent Wetlands 1.1 0.49 

Savannas 1.1 0.49 

Woody Savannas 1.1 1.2 

Snow/Ice 0 0 

Urban 0.1 0 

Water 0 0 

As with most datasets, there are some limitations and uncertainties associated with the 
satellite products used in this study. While satellite datasets are extremely useful, there are some 
limitations associated with them, such as satellite overpass time and cloud cover. Some 
uncertainties associated with the MODIS burn area data include potential burn area 
underestimation due to canopy vegetation and/or cloud cover and difficulty mapping small fires 
(Roy and Boschetti, 2009). The biggest limitations with the AVHRR continuous tree product is 
its age (acquired 1992-1993). The accuracy of the land classifications for the MODIS Land 
Cover dataset is approximately 75% with an error variance on this estimate of 1.3% and a 95% 
confidence interval of 72.3–77.4% (Friedl et al., 2010). Furthermore, uncertainties can arise from 
natural variations in emission factors (Akagi et al., 2011). 
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Comparison with Other Inventories 
In comparison with other inventories, the methodology used in this study most closely 

resemble the methodology used in FINN (Table 2), due to the usage of the MODIS Land Cover 
product biomass loading lookup table from Wiedinmyer et al. (2006), the methodology used to 
determine the fraction of biomass burned and the emission factors used (i.e. Akagi et al., 2011). 
However, the input variables are different. 

Table 2. Comparison in methodology and input data used in this study with other accepted 
inventories. 

This Study FINN NEI GFED 

Burn 
Area 

MODIS burn area product 
(MOD45) 

MODIS thermal 
anomalies product 

Incident reports, NOAA 
HMS fire products 

MODIS burn area product 
(MCD64A1) with an estimation 
of small fires using active fire 
data 

Biomass 
Loading 

Lookup table [from 
Wiedinmyer et al. (2006)] 
using MODIS Land Cover 
(MCD12Q1) 2005 
(preliminary results) and 
2010 (future work) 

Lookup table using 
MODIS Land Cover 
(MCD12Q1) 2005 

Fuel characteristic 
classification system 
derived from Landsat 

CASA model 

Fraction 
of 

Biomass 
Burned 

Function of % Tree Cover 
(AVHRR Continuous Tree 
Cover product 
[preliminary; for 
1992/1993] and MODIS 
VCF [future work; for 
2010]) 

Function of % Tree 
Cover 

(MODIS VCF product 
for 2001) 

Estimated in consumption 
model 

Lookup table with fraction for 
standing biomass, standing fuel 
and surface litter 

Emission 
Factors 

Akagi et al. (2011); 
Urbanski (2014); Andreae 
and Merlet (2001) 

Akagi et al. (2011); 
Andreae (2008) 

Wildfire based on Urbanski 
(2014); Agriculture based 
on Pouloit et al. (2016) 

Akagi et al. (2011); Andreae 
and Merlet (2001) 

The US EPA NEI is produced every three years and includes a combination of 
methodologies. National processing is done using the methodology described below, but states 
are allowed to submit revised emissions that supersede the national processing. For wildland 
fires, national processing is done using estimations of the burned area of the fire, the available 
fuel, the fuel moisture conditions, and an emission factor for the pollutant for a specific land 
classification type. Wildland fire emissions are processed using a combination of the SmartFire2 
fire information system and the BlueSky modeling framework (Larkin et al, 2009). For the 2011 
and 2014 NEIs (EPA, 2016; EPA, 2015), area burned data were collected from the S/L/T (state, 
local, tribe) agencies as well as from national agencies and organizations and then cleaned (i.e. 
eliminating errors and standardizing format) and combined with satellite fire detections to 
produce a single comprehensive daily fire location data. Fuel loadings were taken from the Fire 
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Characteristic Classification System (FCCS) (McKenzie et al., 2007). The fuel moisture taken 
from the Wildland Fire Information System using fire weather observation files from remote 
weather stations operated by the US Forest Service (USFS). The fire location, fuel moisture and 
fuel loading data is then used within the BlueSky Framework to estimate the fuel consumption 
and the smoke emissions using a consumption model. The emission factors used in the 2014 NEI 
estimation for wildland fires were regional emission factors based on the work of Urbanski 
(2014). For agricultural burning, the NEI uses the Hazard Mapping System (HMS) fire product 
to detect fires and then extricates the agricultural fires and identifies the crop type using the 
USDA Cropland Data Later product (Pouliot et al., 2016). The emissions factors for ammonia 
used for the agricultural burning were derived from crop residue emission estimates from the 
2002 NEI, which used a ratio of NH3/NOx and the NOx emission factor (McCarty et al., 2011; 
Pouliot et al., 2016). When comparing the emission factors used for the US EPA NEI with the 
emission factors used in this study, there are similarities and differences in the categories. For 
example, while this study gives a specific emission factor for agriculture, the NEI uses a different 
emission factors for each specific type of cropland (Pouliot et al., 2016). In addition to this, it is 
important to note that while this study does not specify between prescribed fires and wildfire, the 
NEI does. 

As is done in the methodology of this study, FINN also uses Equation 1 to estimate 
emissions from biomass burning (Wiedinmyer et al., 2006; Wiedinmyer et al., 2011). However, 
there are some differences in data used between the two methods (Table 2). The default version 
of the FINN model identifies the location and the timing of fires using the MODIS Thermal 
Anomalies Product (Giglio et al., 2003; Giglio et al., 2006), which detects active fires, at a 
nominal horizontal resolution of approximately 1 km2, based on observations from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) instruments on board of NASA’s Terra and 
Aqua satellites. The processed fire detection data, which is processed via the MODIS Rapid 
Response or the MODIS Data Processing System (Collection 5), was obtained directly from the 
University of Maryland (Wiedinmyer et al., 2011). FINNv1 does not obtain the area burned using 
a burned area product. Instead, each fire is assumed a burn area of 1km2, with grasslands 
assigned a burn area of 0.75 km2 (Wiedinmyer et al., 2006; Al-Saadi et al., 2008; Wiedinmyer et 
al., 2011). The MODIS Collection 5 Land Cover Type (LCT) product for 2005 (Friedl et al., 
2010) is used to obtain the type of vegetation burned at each fire pixel. Each fire pixel is then 
assigned a land classification using the IGBP (International Geosphere-Biosphere Programme) 
land cover classification table. The MODIS Vegetation Continuous Fields (VCF) product 
(Collection 3 for 2001), which identifies the tree cover percent, the non-tree vegetation percent, 
and bare cover percent at a resolution of 500 m (Hansen et al.,2003; Hansen et al., 2005), is used 
to determine the density of the vegetation at each fire pixel (Wiedinmyer et al., 2011). The land 
classification is then simplified such that all the land classification categories are lumped into 6 
generic land classifications in order to make use easier with known emission factors and fuel 
loadings (Wiedinmyer et al., 2011). The fuel loadings used in FINN are based on the work of 
Hoelzemann et al. (2004), with updates made by Wiedinmyer et al. (2011). The fraction of 
biomass burned is obtained following the work of Ito and Penner (2004). While there are many 
similarities between the inputs of FINN versus the calculations used in this study, such as the 
emission factors used, the land classification data used and the methodology for the fraction of 
biomass burned, there are also some major differences. For example, this study uses the MODIS 
burned area product for the burn area input as oppose to estimation technique based off the active 
fire data used in default runs of FINN. In addition to this, the fraction of biomass burned product 
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used in this study (AVHRR Continuous Fields Tree Cover product) is different than what was 
used in FINN (MODIS Vegetation Continuous Fields (VCF) product) and the land classifications 
in this study were not simplified as they were done in FINN. 

The GFED emissions of ammonia are estimated by combining the burned area data and 
emission factor data with a revised version of the Carnegie-Ames-Stanford Approach (CASA 
–GFED) biogeochemical model that estimates fuel loads and combustion completeness for each 
monthly time step (van der Werf et al., 2010; van der Werf., 2017). Within the CASA-GFED 
modeling framework, there are several different datasets used. The ambient air temperature, soil 
moisture and solar radiation data are obtained from European Centre for Medium Range Weather 
Forecasts’ ERA-Interim dataset, as described by Dee et al. (2011) (van der Werf et al., 2017). 
Other datasets include the fAPAR (fraction of absorbed Photosynthetically Active Radiation) 
data, which is used to estimate net primary production (NPP), calculated based on version 3g of 
the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation 
index (NDVI) (Pinzon and Tucker, 2014), the fraction of tree cover (FTC) derived from the 
vegetation continuous fields MOD44B (V051) from MODIS (Hansen et al., 2005), and land 
classification data from MODIS MCD12C1 with classifications from the University of Maryland 
land cover classification dataset (Friedl et al., 2010). The burn area used in GFED is a 
combination of the 500 m Collection 5.1 MODIS direct broadcast (DB) burned area product 
(MCD64A1) at a spatial resolution of 0.25°  (Gigilo et al., 2013) and the burn are of small fires, 
which is statistically estimated using the 500m burn area (MCD64A1), the active fire data from 
MODIS and 500m surface reflectance observations (see Randerson et al., 2012 and van der 
Werf., 2017). The modeling framework calculates the carbon fluxes and then the emission 
factors are used to calculate these fluxes into emissions. 

Regression Analysis 
Emissions of NH3 from biomass burning are dependent upon not only fuel type and fire 

properties, but also meteorological conditions. Therefore, a statistical regression analysis was 
performed using SAS (v9.4) to determine a regression model to predict NH3 emissions from 
biomass burning using the burn area and ambient air temperature. Using this data, the statistical 
observation model (SOM) (r2 = 0.92, n = 48) for NH3 emissions (ENH3, in g) is as follows 
(Equation 3): 

ENH3 = 0.012*[ (BA0.88) *((TA + 20)2.25)] (3) 

where BA is the total monthly burn area (m2) and TA is the average monthly ambient temperature 
(º𝐶). The burned area data used in this regression analysis is described in the proceeding 
sections. The meteorological data (the average ambient temperature) were obtained from the 
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 
Information Climate Data website (Menne et al., 2012). The GHCND (Global Historical 
Climatology Network) Monthly Summary data for the CONUS from 2010-2013 were used, 
which provided the monthly mean temperature (°F). This data is described in detail in Menne et 
al. (2012). To ensure accuracy, only measurements that passed the NOAA National Climatic 
Data Center quality assurance check were used in this study. The emission inventory created in 
this study was used in the development of this regression analysis because it is easily 
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reproducible using readily available satellite datasets (e.g. MODIS burn area and land cover 
data) for any emission species that emission factors have been developed for. It is important to 
note that several iterations were done in the creation of this regression equation using all and a 
combination of the following parameters: monthly total burn area, the monthly total number of 
fires, the monthly total precipitation, the average monthly temperature, the average monthly fire 
radiative power and the average monthly fraction of biomass burned and fuel loadings. While all 
of these are important parameters to estimate emissions from biomass burning, the equation with 
just burn area and temperature provided the best results (based on correlation coefficient and 
mean normalized bias). 

Statistical Comparison 
There are several methods that can be used to evaluate air quality models (e.g EPA, 1991, 

Tong and Mauzerall, 2006). In this study, the mean normalized bias (MNB), the normalized 
mean bias (NMB) and the normalized mean error (NME) were used in the comparison between 
the NH3 emissions from biomass burning calculated in this study and those emissions determined 
by the regression model in order to determine the accuracy of the model. The equations for the 
statistical comparisons are as follows: 

𝑁 𝑖 (𝑖) ( )− 𝐸
𝑐 1𝑀𝑁𝐵 = ∑ ( 

𝐸
𝑚 ), (4)𝑁 

𝑖=1 
𝐸

𝑐 (𝑖) 

𝑁 

∑ 𝐸
𝑚 

𝑖 (𝑖) ( )−𝐸
𝑐 1 𝑖=1 𝑁𝑀𝐵 = 𝑁 

, (5)𝑁 

∑ 𝐸
𝑐
(𝑖) 

𝑖=1 

𝑁 

∑ |𝐸
𝑚 

𝑖 (𝑖)| ( )− 𝐸
𝑐 1 𝑖=1 𝑁𝑀𝐸 = 𝑁 𝑁 , (6) 

∑ |𝐸
𝑐 

𝑖( )| 
𝑖=1 

where N is the number of observations, Em are the emissions projected by the regression model, 
and Ec are the emissions calculated in this study. 

RESULTS & DISCUSSION 

On a national scale, there was a general decrease in the number of fires from 2005 to 
2015, with an average change of ~2% per year (Figure 1A). However, this trend is not 
statistically significant (p > 0.05, R2 = 0.03). Over the period, there were, on average, 104,267 ± 
16,461 fires per year, with the highest number of fires occurring in 2012 (132,469) and the 
lowest number of fires occurring in 2009 (81,149). When looking at the fire number per year on 
a monthly basis, there is a lot of variability year to year (Figure 2A). However, on average, the 
monthly fire number peaks in both the spring and the fall. This bimodal, seasonal trend can likely 
be attributed to the agricultural burns that occur in the spring and the warm weather (which is 
conducive for fires) that occurs in the late summer. The yearly average fire radiative power, 
which measures the rate of the radiant heat output of a fire, showed a generally positive trend 
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(average increase ~8% per year) on a national scale from 2005 to 2015. However, this trend was 
not statistically significant (p > 0.05, R2 = 0.1). The average yearly FRP was 55 ± 10 MW, with 
the maximum average yearly FRP occurring in 2015 (77 ± 49 MW) and the minimum yearly 
average FRP occurring in 2010 (39 ± 10 MW) (Figure 1B). On a monthly scale, FRP values 
generally peaked in the summer months, however, the highest monthly average FRP occurred in 
January of 2015 (160 MW) (Figure 2B). The average yearly fire brightness temperature, which 
is a measure of the photons at a particular wavelength (4 µm) received by the spacecraft (Giglio 
et al., 2003; Giglio et al., 2016; NASA, 2018), was approximately constant (average -0.03% per 
year), with the yearly average brightness temperatures ranging from 320 K to 324 K (Figure 
1C).Similarly, the monthly average brightness temperatures were also approximately constant, 
ranging from 312 K to 339 K (Figure 2C). On average, ~200,367 ± 64,112 km2 of land was 
burned from 2005 to 2015, with highest total burn area occurring in 2011 (~305,449 km2) and the 
lowest observed burn area occurring in 2010 (81,926 km2) (Figure 1D). While there was 
variation year to year in the total burn area, the general trend in area burned increased over the 
period (on average ~23% per year). However, this trend was not statistically significant (p > 
0.05, R2 = 0.2). On a monthly scale, the peak burn area varies from year to year (Figure 2D). 
However, it is evident that the peak burn area is at a maximum from May to September. This is 
expected due to the warmer and dryer conditions that occur in the North American spring and 
summer. It is important to note the limitation of the short study period. While the period is long 
enough to get a short term trend, a longer analysis time is needed to determine a definite trend. 
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Figure 1. The yearly total number of fires, the yearly average fire radiative power (and 
associated standard deviation), the yearly average brightness temperature (and associated 
standard deviation), the yearly burn area and the yearly ammonia emissions from fires plotted for 
2010-2014. The associated trend line is displayed as a yellow-gold line. Error bars represent the 
standard deviation. 
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Figure 2. The monthly total number of fires, the monthly average fire radiative power, the 
monthly burn area and the monthly NH3 emissions from biomass burning for each year in the 
study. 
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Ammonia Emissions from Biomass Burning 

Calculated Emissions 
The average annual NH3 emissions from biomass burning on a national scale were 

approximately 5.4e8 ± 3.3e8 kg year-1 for 2005-2015. There was a general increase (on average 
~98% per year) in the amount of ammonia emitted from biomass burning (Figure 1E). However, 
this trend is statistically insignificant (p > 0.05, R2 = 0.3). As discussed above, burn area is a key 
contributor to emissions of ammonia. The increase in burn area is important because a larger 
burn area likely leads to an increase in fuels (and available nitrogen) and therefore an increase in 
the ammonia emitted from the fires. Similar to the observed monthly burn area, there is 
variability for the monthly total emissions, particularly in the summer months (Figure 2E). 
However, in general, NH3 emissions tend to peak in the summer months. This can be attributed to 
wildland fire activity, which typically covers a larger burn area and occurs in the summer months 
when it is warmer and dryer (particularly in the western US), due to the nitrogen rich fuels (e.g. 
forests). 

When comparing the number of fires and ammonia emissions from fires (Figure 3B), a 
moderate positive relationship was observed (r = 0.55). When comparing ammonia emissions 
from fires with the burn area (Figure 3A), a moderate-strong positive relationship was observed 
(r = 0.70). Because the inventory is built based on the burn area of fires as oppose to the number 
of fires, this was unsurprising. Similarly, moderate positive relationships were also observed 
when comparing the monthly average FRP (not shown) and brightness temperatures (Figure 3D) 
with the average monthly NH3 emissions (r = 0.43 and r = 0.57, respectively). A moderate 
positive relationship was observed when comparing ambient temperature with ammonia 
emissions (r = 0.46, Figure 3C). 
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Figure 3. Comparing the total monthly ammonia emissions (kg) from fires, represented by the 
circles, with the total monthly burn area (m2) (A) for the continental United States, the number of 
fires (B), with the monthly average ambient temperature (C) and monthly average brightness 
temperature (D), plotted on a linear scale. 
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Regression Analysis 
A regression model that accounts for both fire size and meteorological conditions was 

created to predict monthly NH3 emissions from biomass burning (Equation 3; r2 = 0.92, n = 48). 
When comparing this model (SOM) against the monthly calculated emissions from this study 
(Figure 4, Table 3), it was found that the regression model was a factor of 1.18 lower than the 
mean observed values and a factor of 0.64 higher than the median observed values. The 
aforementioned comparison statistics were done to compare the SOM against emissions 
calculated during this study. The mean normalized bias (MNB) was 69%, the normalized mean 
bias (NMB) was -0.12% and the normalized mean error (NME) was 0.44%. However, because 
much of the data (2010-2013) used to calculate the monthly emissions for this study were used in 
the creation of the regression model, this similarity between the model and the observations was 
expected. Therefore, to test the SOM further, the modeled emissions were then compared against 
the calculcated emissions for 2005-2009 and 2015 (i.e. emissions not used in the creation of the 
regression). The results of this showed that the model was a factor of 1.10 lower than the mean 
calculated emissions and a factor of 0.61 higher than the median calculated emissions (Figure 5, 
Table 4). The comparison statistics for this analysis showed that the MNB = 91%, the NMB = 
-0.11% and the NME = 0.72%. 

Table 3. Comparison statistics for national monthly NH3 emissions for 2010 to 2014. 

NH3 Emissions 
(kg Month-1) 

Observations 
Average 

Standard Deviation 
4.5e7 
1.0e8 

Max 6.5e8 
Median 7.7e6 

Model 
Average 

Standard Deviation 
3.8e7 
5.5e7 

Max 2.4e8 
Median 1.2e7 

Comparison Statistics 
Mean Normalized Bias (%) 69 

Normalized Mean Bias (%) -0.12 

Normalized Mean Error (%) 0.44 

Ratio of average measured value to 1.18 
average modeled value 

Ratio of median measured value to median 0.64 
modeled value 

Correlation Coefficient (r) 0.78 
Number of Observations 132 
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Figure 4. Comparing the predicted NH3 emissions with the calculated NH3 emissions for 
2010-2014 on a log scale. The red line represents the one-to-one trendline where the calculated 
NH3 emissions = the predicted SOM NH3 emissions. The gold line represents the mean bias line 
and the purple line represents the median bias line. 
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Table 4. Comparison statistics for the national monthly NH3 emissions for 2014. 

NH3 Emissions 
(kg Month-1) 

Observations 
Average 4.2e7 

Standard Deviation 9.5e7 
Max 5.8e8 

Median 8.2e7 
Model 

Average 3.8e7 
Standard Deviation 5.2e7 

Max 1.9e8 
Median 1.3e7 

Comparison Statistics 

Mean Normalized Bias (%) -91 
Normalized Mean Bias (%) -0.11 

Normalized Mean Error (%) 0.72 
Ratio of mean measured value to mean 1.10 

modeled value 
Ratio of median measured value to median 0.61 

modeled value 

Correlation Coefficient (r) 0.80 
Number of Observations 84 
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Figure 5. Comparing the predicted NH3 emissions with the calculated NH3 emissions for 2014 
on a log scale. The red line represents the one-to-one trendline where the calculated NH3 

emissions = the predicted SOM NH3 emissions. The gold line represents the mean bias line and 
the purple line represents the median bias line. 

Comparison with Other Inventories 
Figure 6 compares the results of this study with prominent emission inventories. There is 

a lot of variation both between each year as well as between each inventory. On a national scale, 
the calculated (average 5.40e8 ± 3.31e8 kg year-1 ) and modeled (average 4.58e8 ± 1.33e8 kg 
year-1 ) ammonia emissions from biomass burning were found to be, on average, a factor of 1.3 
and 1.1, respectively, higher than the US EPA National Emissions Inventory (average 4.04e8 ± 
3.57e8 kg year-1 ) (EPA, 2016; EPA, 2015). Similar to the comparisons between the NEI and the 
calculated ammonia emissions from biomass burning in this study, the total yearly ammonia 
emissions from biomass burning modeled by FINN (average 9.08e7 ± 1.33e7 kg year-1 ) 
(Wiedinmyer et al., 2011) and the GFED (average 4.14e7 ± 9.77e6 kg year-1 ) (van der Werf et 

18 



al., 2017) were both lower than what was calculated in this study. On average, the emissions 
calculated and modeled in this study were a factor of 5.9 and 5.0, respectively, higher than the 
emissions obtained from FINN and a factor of 13.1 and 11.1 higher than those obtained from the 
GFED. 

Figure 6. Comparing the yearly total NH3 emissions (on a log scale) from biomass burning 
calculated and predicted in this study with the NEI, the FINN and the GFED. Note that 2014 was 
not included in the creation of the SOM. 

Through the study period, the NEI yearly total NH3 emissions from biomass burning were 
consistently similar to both the calculated emissions and the SOM predicted emissions. Similarly, 
both FINN and GFED were consistently lower than both the NEI and the emissions quantified in 
this work. Despite using the same general methodology, the emissions between inventories are 
highly variable. Due to both uncertainties in NH3 emissions from fires as well as uncertainties in 
the products used to obtain emission estimates, it is not surprising that there are major 
inconsistencies between each inventory. Variation between fire emission inventories was also 
observed by Larkin et al. (2014), who did a similar study comparing several pollutant emissions 
(e.g. CO2, CH4, N2O) for CONUS from FINN, GFED, NEI and the EPA Greenhouse Gas 
emissions inventories. Similar trends were observed, where the NEI projected the highest 
emissions, followed by FINN and then GFED. The differences observed in Larkin et al. (2014) 
were attributed to the differences and uncertainties associated with the input parameters, such as 
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how prescribed fires were represented, the fuel loadings used as well as how deep organic 
combustion was modeled. Variation in and uncertainties associated with all the input parameters 
for biomass burning emissions all contribute to disagreement between inventories. Furthermore, 
the magnitude of variation in reactive nitrogen emission inventories (including, but not limited to 
biomass burning emissions) is extreme due to uncertainties in the strength of the emission 
sources as shown by Battye et al. (2017). 

CONCLUSIONS 

According to the U.S. EPA’s 2014 National Emission Inventory (EPA, 2014), biomass 
burning is the second largest emissions source of ammonia (accounting for ~10%) following 
agricultural sources. The results of this study showed that on average, there were 5.4e8 ± 3.3e8 
kg of NH3 year-1 emitted across the CONUS for 2005-2015. Through the study period, there was 
a general decrease in the number of fires and a general increase in the average fire radiative 
power, the total area burned and in the total ammonia emitted from biomass burning. However, 
these observed trends were not statistically significant. 

A regression model (r2 = 0.92, n = 48) was developed in order predict emissions as a 
function of fire burn area and ambient temperature. When comparing the regression model with 
the results from this study, it was found that the regression model was a factor of 1.18 (MNB = 
-69%, NMB = -0.12%, NME = 0.44%) lower than what was observed. Both the calculated and 
modeled (i.e. predicted by the statistical regression model) NH3 emissions were then compared 
against currents fire emission inventories (NEI, FINN, GFED). When comparing the US EPA 
National Emissions Inventory for NH3 emissions from fires for the continental United States, it 
was found that the NEI was approximately a factor of 1.3 and 1.1 lower than what was calculated 
and modeled, respectively, in this study. Similarly, the emissions calculated and modeled in this 
study were a factor of 5.9 and 5.0, respectively, higher than the emissions obtained from FINN 
and a factor of 13.1 and 11.1 higher than those obtained from the GFED. These discrepancies are 
attributed to differences in the emission estimation technique used as well as differences in the 
input data used. 

Future Work 

Due to the short nature of this study, the next step is to extend the study period in order to 
conduct a better trend analysis. Furthermore, the data used to determine the fraction of biomass 
burned will be updated from the AVHRR Continuous Fields Tree Cover Product to the MODIS 
Vegetation Continuous Fields product. This will allow for a more accurate estimate of the 
fraction of biomass burned. Changes in the earth’s climate will likely influence both fire strength 
and frequency, and therefore influence emissions of ammonia from biomass burning. An increase 
in emissions from fires could potentially lead to higher concentrations of ammonia. The 
statistical regression model developed in this study will allow for the prediction of ammonia 
emissions associated with future climate change. Future directions with this work include 
projecting ammonia emissions using future climate scenarios in order to see how emissions will 
change as the climate changes. 
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