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Abstract

This study quantifies ammonia (NH;) emissions from biomass burning from 2005 to
2015 across the continental US (CONUS) and compares emissions from biomass burning with
the US Environmental Protection Agency (EPA) National Emissions Inventory (NEI), the Fire
Inventory from the National Center for Atmospheric Research (FINN) and the Global Fire
Emissions Database (GFED). A statistical regression model was developed in order to predict
NH; emissions from biomass burning using a combination of fire properties and meteorological
data. Satellite data were used to evaluate the annual fire strength and frequency as well as to
calculate the total NH; emissions across the CONUS. The results of this study showed the total
fire number has decreased, while the total yearly burn area and the average fire radiative power
has increased. The average annual NH; emissions from biomass burning from this study, on a
national scale, were approximately 5.4e8 + 3.3e8 kg year'. When comparing the results of this
study with other emission inventories, it was found that ammonia emissions estimated by the
NEI were approximately a factor of 1.3 lower than what was calculated in this study and a factor
of 1.1 lower than what was modeled using the statistical regression model for 2010-2014. The
calculated NH; emissions from biomass burning were a factor of 5.9 and a factor of 13.1 higher
than the emissions from FINN and the GFED, respectively. The modeled NH; emissions from
biomass burning were a factor of 5.0 and a factor of 11.1higher than the emissions from FINN
and the GFED, respectively. As the climate continues to change, the pattern (frequency, intensity
and magnitude) of fires across the US will also change, leading to changes in NH; emissions.
The statistical regression model developed in this study will allow prediction of NH; emissions
associated with climate change.
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INTRODUCTION

Ammonia (NH;) is an important base gas in the atmosphere (Battye et al., 2017, Aneja et
al., 2008, Aneja et al., 1998). NH; reacts with sulfuric, nitric and hydrochloric acids to form
ammonium sulfate, ammonium bisulfate, ammonium nitrate and ammonium chloride which
contribute to the formation of PM, 5 (particulate matter with diameter less than 2.5 micrometers)
(Baek and Aneja, 2004; Bacek et al., 2004; Davidson et al., 2012; Day et al., 2012; Chen et al.,
2014). There are many adverse health effects associated with exposure to elevated concentrations
of fine particulate matter, such as chronic bronchitis, aggravated asthma, irregular heartbeat,
other cardiovascular and respiratory issues and even death (Pope et al., 2002; Schwartz et al.,
2002; Pope et al., 2009; Kwok et al., 2013; Crouse et al., 2015; Lelieveld et al., 2015). Exposure
to elevated PM, 5 concentrations is a major concern for human health and welfare due to the
particles’ ability to penetrate deep into the respiratory tract. PM, s is also associated with several
environmental impacts, such as reducing visibility and changing the earth’s radiational balance
(Fan et al., 2005; Behera and Sharma, 2010a; Behera and Sharma, 2010b, Heald et al., 2012;
Wang et al., 2012). Furthermore, gaseous NH; may be deposited to the Earth’s surface, which
leads to ammonification, eutrophication and a loss of biodiversity (Langford et al., 1992;
Robarge et al., 2002; Galloway et al., 2004; Clark and Tilman, 2008; Janssens et al., 2010; Day
et al., 2012; Holtgrieve et al., 2011; Phoenix et al., 2012; Erisman et al., 2013; Chen et al., 2014).
Increased concentrations of NH; can also lead to a decreased resistance to drought and frost
damage (Robarge et al., 2002). In addition, NH; plays a role in the formation of nitrous oxide,
which is a major greenhouse gas (Bouwman, 1996).

Major sources of atmospheric NH; include NH; based fertilizers, animal waste, and
biomass burning, with intensely managed livestock and agricultural sources of NH; contributing
most to NH; concentrations (Langford et al., 1992; Schlesinger and Hartley, 1992; Bouwman et
al., 1997; Flechard and Fowler, 1998; Battye et al., 2003; Aneja et al., 2009; Zbieranowski and
Aherne, 2012). While agriculture accounts for approximately 82% of all NH; emissions on a
national level, fires account for a total of about 10% of all ammonia emissions nationwide (2014
NEI). NHj; is mainly emitted into the atmosphere during smouldering combustion, which occurs
in slow, low-temperature fires without a flame (Langford et al., 1992; Nance et al., 1993; Goode
et al., 2000; McMeeking et al., 2009; Akagi et al., 2010; Alves et al., 2011; Chen et al., 2014).

Previous works have shown an overall increase in NH; sources (Erisman et al., 2008) and
atmospheric NH; concentrations over the past several years (Saylor et al., 2015; Butler et al.,
2016; Yao and Zhang, 2016). While the overall increase in NH; emissions cannot solely be
attribute to fire activity, it is possible that biomass burning emissions of NH; are contributing to
the observed increase in ambient emissions. For example, Saylor et al. (2015) also observed
unusually high concentrations of NH; across the southeastern United States (US) during 2007,
when fires were prevalent due to increased temperatures and widespread drought. Similarly,
R’honi et al. (2013) observed NH; concentrations were two orders of magnitude larger than
background levels during the summer of 2010, which was the hottest and driest summer on
record (until 2015), when wildfires ran rampant across Europe and Russia. Hot and dry
conditions in the Mediterranean countries, Australia and the western United States have
contributed to an increase in wildfire activity, thus increasing the emission of gaseous NHj,
among other pollutants, into the atmosphere (Alves et al., 2011). The strength and frequency of
fires are not only controlled by the properties of the fuel and the geography, but they are also
influenced by weather and climate (Pyne et al., 1996; Liu et al., 2010). Therefore, changes in the
earth’s climate will likely result in changes in fire activity. Higher temperatures and widespread



drought are expected to cause an increase in the number of observed wildfires across many
regions, such as the southeastern United States, the northern great plains, the Pacific coast, the
southwestern US and the southern Rockies (Pinol et al., 1998; Gillet et al., 2004; Reinhard et al.,
2005; Liu, 2006; Westerling et al., 2006; Alves et al., 2011; Litschert et al., 2012; Saylor et al.,
2015; Skibba, 2015). However, due to changes in relative humidity and wind speeds, the future
fire potential in the northern Rockies and the northwestern United States may likely be reduced
(Liu et al., 2013). On a global scale, wildfire potential is projected to increase as the climate
changes, specifically in locations that are already prone to the occurrence of wildfires (Liu et al.,
2010). This increase in wildfire potential will then potentially lead to an increase in NH;
emissions from biomass burning.

Biomass burning is an important source of NH; emissions, but the strength of the source
remains poorly quantified (Alves et al., 2011; Chen et al., 2014). Therefore, the primary
objective of this study is to quantify NH; emissions from biomass burning (wildfires, agricultural
burns and prescribed burns) from 2005 to 2015 across the continental US and compare against
major emission inventories used in atmospheric models. The inventories compared in this study
include the Fire Inventory from the National Center for Atmospheric Research (FINN v1.5,
Wiedinmyer et al., 2011), the Global Fire Emissions Databases (GFED v4.1, with small fires;
van der Werf et al., 2017), and the US Environmental Protection Agency (EPA) National
Emissions Inventory (NEI). As described in Larkin et al. (2014), the US EPA NEI is produced
every three years and includes state submitted data. For this study, the years 2011 and 2014 are
NEI process years while the remaining years in this study are considered fire inventory data,
which were compiled using a more limited set of inputs. Therefore, while the US EPA emissions
data is referred to as NEI in this study, it is important to remember that only 2005, 2008, 2011
and 2014 are NEI process years and the remaining years are based on EPA fire inventory data.
Furthermore, a regression analysis, using forward stepwise regression, was completed in order to
determine the best fitting model of NH; emissions from biomass burning using a combination of
in-situ and satellite (primarily NASA’s Terra and Aqua) observations. This work proposes a new
methodology to project emissions of NH; on a national scale, which would help society
understand the implications of the changing climate and adequately prepare and/or prevent these
changes. Furthermore, this methodology also provides a relatively simply approach to estimating
past, present and future emissions based on readily accessible data (temperature and burn area).

DATA & METHODOLOGY

In order to compare the calculated fire emissions (discussed in the following section)
with the fire properties (number of fires, fire radiative power, and fire brightness temperature) as
well as to observe trends in the fire properties, the National Aeronautics and Space
Administration’s (NASA) Fire Information for Resource Management System (FIRMS) was
utilized to obtain archived fire locations, frequency and strength. This data was obtained from the
MODIS sensor on NASA’s Earth Observing System satellites (Terra and Aqua) (Friedl et al.,
2010). The MODIS active fire product obtained (Collection 6, Giglio et al., 2016) uses a fire
detection algorithm that uses a multispectral contextual approach to leverage the mid-infrared
radiations emitted by fires (Davies et al., 2009). FIRMS delivers the MODIS fire data locations
that represent the center of a 1 km pixel that is flagged by the algorithm as an area that contains
at least one fire/hotspot within the pixel (Davies et al., 2009). The brightness temperature is
calculated using the average intensity of infrared radiation at two wavelengths near 4 um for a 1
km x 1 km pixel (Giglio et al, 2003; Giglio et al., 2016). In the Collection 6 MODIS active fire



product, the fire radiative power was derived using the Wooster, Zhukov, and Oertel (2003),
Wooster et al. (2012) approach (Giglio et al., 2016). In order to ensure quality, only fire data
with a confidence estimate greater than 33% (i.e. medium and high confidence fires) will be used
in this study.

Quantification of NH; Emissions

There are several methods that can be used to quantify emissions of pollutants (i.e. NHj;)
from biomass burning (i.e. van der Werf et al., 2003; Hoelzemann et al., 2004; Ito and Penner,
2004;, van der Werf et al., 2014; Dennis et al., 2002; Langmann et al., 2009; Ichoku and Ellison,
2014). In this study, ammonia emissions from biomass burning were calculated using the
emission factor approach (Equation 1) equation adapted from Seiler and Crutzen (1980),
Wiedinmyer et al. (2006), Wiedinmyer et al. (2011) and Oliveras et al. (2014):

Ei BA(x’t) X B(x)XFBXEFj (1)

where E; is the emission of species i (in this case, NH;), BA is the area burned at time t and
location x, B is the biomass loading at location x, FB is the fraction of that biomass burned in the
fire and EF; is the emission factor of species i. In order to obtain the area burned (BA), the
Moderate Resolution Imaging Spectroradiometer (MODIS) Burned Area product (MCDA45,
Collection 5.1), obtained from the University of Maryland’s website, was used. The burn area is
determined by the MODIS algorithm that uses time series of the daily 500 m MODIS land
surface reflectance data (Roy et al., 2002; Roy et al., 2005; Roy et al., 2008). The MODIS
burned area product was validated by Roy et al. (2005) and then again by Roy and Boschetti
(2009), who found that the MODIS product provided the most accurate burned area maps when
compared with other products (i.e. L3JRC, GlobCarbon). The biomass loading (B), which is
defined as the amount of biomass available that can be burned in each fire, was obtained from
Table 1 in Wiedinmyer et al. (2006), which describes the total fuel loading assumptions for
various land cover classifications based on the literature. In order to quantify the amount of
biomass burned, it was first necessary to know the type of land being burned. Therefore, the
Collection 5 MODIS Global Land Cover Type product for 2010 (MCD12Q1) was used to
determine land type (Friedl et al., 2010; Channan et al., 2014). This database contains land cover
classifications at a spatial resolution of 500m. This data was readily available from the MRLC
website. This was then used to estimate the fraction of biomass burned (FB) within the fire using
the methods used by Wiedinmyer et al. (2006) and Wiedinmyer et al. (2011), which were adapted
from Ito and Penner (2004). In this method, areas with 60% or more tree cover are given an FB
value of 0.3 for the woody fuel and 0.9 for herbaceous cover. Areas with 40-60% tree covers, the
FB is 0.3 for woody fuels and the FB for herbaceous fuels can be calculated using the following
equation (Equation 2):

-0.13* i
FBherb =¢ 0.13*FractionTreeCover (2)

Finally, when the fraction of tree cover is less than 40%, no woody fuel is assumed to burn and
an FB value of 0.98 is given for herbaceous fuels (Wiedinmyer et al., 2006; Ito and Penner,
2004). The fraction of tree cover was obtained at a 1 km? spatial resolution via the Advanced
Very High Resolution Radiometer (AVHRR) Continuous Fields Tree Cover product, which was
readily available from the University of Maryland (Defties et al., 2000). The emission factor
(EF) for ammonia was obtained from Wiedinmyer et al. (2011), who classified the emission
factors based on MODIS land use/land cover classification based on literature values (Akagi et



al. (2011) for the NH; emission factors). Table 1 shows the emission factors used in this study,
obtained from Wiedinmyer et al. (2011).

Table 1. The biomass loading term (kg m™) for each respective land classification type
(Wiedinmyer et al., 2006) and the NH; emission factor for each land classification type
(Wiedinmyer et al., 2011).

Biomass NH; Emission Factor
Land Classification Loading (g per kg Biomass Burned)
(kg per m’)
Barren 0.1 0.49
Cropland 0.5 23
Deciduous Broadleaf Forest 9.5 1.5
Deciduous Needleleaf Forest 12 3.5
Evergreen Broadleaf Forest 17 0.76
Evergreen Needleleaf Forest 14 3.5
Grasslands 1.1 0.49
Mixed Forest 12 1.5
Open Shrublands 4.3 1.2
Closed Shrublands 4.3 1.2
Permanent Wetlands 1.1 0.49
Savannas 1.1 0.49
Woody Savannas 1.1 1.2
Snow/Ice 0 0
Urban 0.1 0
Water 0 0

As with most datasets, there are some limitations and uncertainties associated with the
satellite products used in this study. While satellite datasets are extremely useful, there are some
limitations associated with them, such as satellite overpass time and cloud cover. Some
uncertainties associated with the MODIS burn area data include potential burn area
underestimation due to canopy vegetation and/or cloud cover and difficulty mapping small fires
(Roy and Boschetti, 2009). The biggest limitations with the AVHRR continuous tree product is
its age (acquired 1992-1993). The accuracy of the land classifications for the MODIS Land
Cover dataset is approximately 75% with an error variance on this estimate of 1.3% and a 95%
confidence interval of 72.3—77.4% (Friedl et al., 2010). Furthermore, uncertainties can arise from
natural variations in emission factors (Akagi et al., 2011).



Comparison with Other Inventories

In comparison with other inventories, the methodology used in this study most closely
resemble the methodology used in FINN (Table 2), due to the usage of the MODIS Land Cover
product biomass loading lookup table from Wiedinmyer et al. (2006), the methodology used to
determine the fraction of biomass burned and the emission factors used (i.e. Akagi et al., 2011).
However, the input variables are different.

Table 2. Comparison in methodology and input data used in this study with other accepted

inventories.
This Study FINN NEI GFED
Burn MODIS burn area product MODIS thermal Incident reports, NOAA MODIS burn area product
Area (MOD45) anomalies product HMS fire products (MCD64A1) with an estimation
of small fires using active fire
data
Biomass | Lookup table [from Lookup table using Fuel characteristic CASA model
Loading | Wiedinmyer et al. (2006)] MODIS Land Cover classification system
using MODIS Land Cover | (MCDI12Q1) 2005 derived from Landsat
(MCD12Q1) 2005
(preliminary results) and
2010 (future work)
Fraction | Function of % Tree Cover | Function of % Tree Estimated in consumption Lookup table with fraction for
of (AVHRR Continuous Tree | Cover model standing biomass, standing fuel
Biomass Covgr produf:t (MODIS VCF product and surface litter
Burned | [preliminary; for for 2001
1992/1993] and MODIS s 2001
VCF [future work; for
20107)
Emission | Akagi et al. (2011); Akagi et al. (2011); Wildfire based on Urbanski | Akagi et al. (2011); Andreae
Factors | Urbanski (2014); Andreae Andreae (2008) (2014); Agriculture based and Merlet (2001)
and Merlet (2001) on Pouloit et al. (2016)

The US EPA NEI is produced every three years and includes a combination of
methodologies. National processing is done using the methodology described below, but states
are allowed to submit revised emissions that supersede the national processing. For wildland
fires, national processing is done using estimations of the burned area of the fire, the available
fuel, the fuel moisture conditions, and an emission factor for the pollutant for a specific land
classification type. Wildland fire emissions are processed using a combination of the SmartFire2
fire information system and the BlueSky modeling framework (Larkin et al, 2009). For the 2011
and 2014 NEIs (EPA, 2016; EPA, 2015), area burned data were collected from the S/L/T (state,
local, tribe) agencies as well as from national agencies and organizations and then cleaned (i.e.
eliminating errors and standardizing format) and combined with satellite fire detections to
produce a single comprehensive daily fire location data. Fuel loadings were taken from the Fire



Characteristic Classification System (FCCS) (McKenzie et al., 2007). The fuel moisture taken
from the Wildland Fire Information System using fire weather observation files from remote
weather stations operated by the US Forest Service (USFS). The fire location, fuel moisture and
fuel loading data is then used within the BlueSky Framework to estimate the fuel consumption
and the smoke emissions using a consumption model. The emission factors used in the 2014 NEI
estimation for wildland fires were regional emission factors based on the work of Urbanski
(2014). For agricultural burning, the NEI uses the Hazard Mapping System (HMS) fire product
to detect fires and then extricates the agricultural fires and identifies the crop type using the
USDA Cropland Data Later product (Pouliot et al., 2016). The emissions factors for ammonia
used for the agricultural burning were derived from crop residue emission estimates from the
2002 NEI, which used a ratio of NH;/NOx and the NOx emission factor (McCarty et al., 2011;
Pouliot et al., 2016). When comparing the emission factors used for the US EPA NEI with the
emission factors used in this study, there are similarities and differences in the categories. For
example, while this study gives a specific emission factor for agriculture, the NEI uses a different
emission factors for each specific type of cropland (Pouliot et al., 2016). In addition to this, it is
important to note that while this study does not specify between prescribed fires and wildfire, the
NEI does.

As is done in the methodology of this study, FINN also uses Equation 1 to estimate
emissions from biomass burning (Wiedinmyer et al., 2006; Wiedinmyer et al., 2011). However,
there are some differences in data used between the two methods (Table 2). The default version
of the FINN model identifies the location and the timing of fires using the MODIS Thermal
Anomalies Product (Giglio et al., 2003; Giglio et al., 2006), which detects active fires, at a
nominal horizontal resolution of approximately 1 km?, based on observations from the Moderate
Resolution Imaging Spectroradiometer (MODIS) instruments on board of NASA’s Terra and
Aqua satellites. The processed fire detection data, which is processed via the MODIS Rapid
Response or the MODIS Data Processing System (Collection 5), was obtained directly from the
University of Maryland (Wiedinmyer et al., 2011). FINNv1 does not obtain the area burned using
a burned area product. Instead, each fire is assumed a burn area of 1km?, with grasslands
assigned a burn area of 0.75 km? (Wiedinmyer et al., 2006; Al-Saadi et al., 2008; Wiedinmyer et
al., 2011). The MODIS Collection 5 Land Cover Type (LCT) product for 2005 (Friedl et al.,
2010) is used to obtain the type of vegetation burned at each fire pixel. Each fire pixel is then
assigned a land classification using the IGBP (International Geosphere-Biosphere Programme)
land cover classification table. The MODIS Vegetation Continuous Fields (VCF) product
(Collection 3 for 2001), which identifies the tree cover percent, the non-tree vegetation percent,
and bare cover percent at a resolution of 500 m (Hansen et al.,2003; Hansen et al., 2005), is used
to determine the density of the vegetation at each fire pixel (Wiedinmyer et al., 2011). The land
classification is then simplified such that all the land classification categories are lumped into 6
generic land classifications in order to make use easier with known emission factors and fuel
loadings (Wiedinmyer et al., 2011). The fuel loadings used in FINN are based on the work of
Hoelzemann et al. (2004), with updates made by Wiedinmyer et al. (2011). The fraction of
biomass burned is obtained following the work of Ito and Penner (2004). While there are many
similarities between the inputs of FINN versus the calculations used in this study, such as the
emission factors used, the land classification data used and the methodology for the fraction of
biomass burned, there are also some major differences. For example, this study uses the MODIS
burned area product for the burn area input as oppose to estimation technique based off the active
fire data used in default runs of FINN. In addition to this, the fraction of biomass burned product



used in this study (AVHRR Continuous Fields Tree Cover product) is different than what was
used in FINN (MODIS Vegetation Continuous Fields (VCF) product) and the land classifications
in this study were not simplified as they were done in FINN.

The GFED emissions of ammonia are estimated by combining the burned area data and
emission factor data with a revised version of the Carnegie-Ames-Stanford Approach (CASA
—GFED) biogeochemical model that estimates fuel loads and combustion completeness for each
monthly time step (van der Werf et al., 2010; van der Werf., 2017). Within the CASA-GFED
modeling framework, there are several different datasets used. The ambient air temperature, soil
moisture and solar radiation data are obtained from European Centre for Medium Range Weather
Forecasts’ ERA-Interim dataset, as described by Dee et al. (2011) (van der Werf et al., 2017).
Other datasets include the fAPAR (fraction of absorbed Photosynthetically Active Radiation)
data, which is used to estimate net primary production (NPP), calculated based on version 3g of
the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation
index (NDVI) (Pinzon and Tucker, 2014), the fraction of tree cover (FTC) derived from the
vegetation continuous fields MOD44B (V051) from MODIS (Hansen et al., 2005), and land
classification data from MODIS MCD12C1 with classifications from the University of Maryland
land cover classification dataset (Friedl et al., 2010). The burn area used in GFED is a
combination of the 500 m Collection 5.1 MODIS direct broadcast (DB) burned area product
(MCD64A1) at a spatial resolution of 0.25° (Gigilo et al., 2013) and the burn are of small fires,
which is statistically estimated using the 500m burn area (MCD64A1), the active fire data from
MODIS and 500m surface reflectance observations (see Randerson et al., 2012 and van der
Werf., 2017). The modeling framework calculates the carbon fluxes and then the emission
factors are used to calculate these fluxes into emissions.

Regression Analysis

Emissions of NH; from biomass burning are dependent upon not only fuel type and fire
properties, but also meteorological conditions. Therefore, a statistical regression analysis was
performed using SAS (v9.4) to determine a regression model to predict NH; emissions from
biomass burning using the burn area and ambient air temperature. Using this data, the statistical
observation model (SOM) (r* = 0.92, n = 48) for NH; emissions (Eyys, in g) is as follows
(Equation 3):

Exis = 0.012%[ (BA™) *((T, +20y**)]  (3)

where BA is the total monthly burn area (m*) and T, is the average monthly ambient temperature
(°C). The burned area data used in this regression analysis is described in the proceeding
sections. The meteorological data (the average ambient temperature) were obtained from the
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental
Information Climate Data website (Menne et al., 2012). The GHCND (Global Historical
Climatology Network) Monthly Summary data for the CONUS from 2010-2013 were used,
which provided the monthly mean temperature (°F). This data is described in detail in Menne et
al. (2012). To ensure accuracy, only measurements that passed the NOAA National Climatic
Data Center quality assurance check were used in this study. The emission inventory created in
this study was used in the development of this regression analysis because it is easily



reproducible using readily available satellite datasets (e.g. MODIS burn area and land cover
data) for any emission species that emission factors have been developed for. It is important to
note that several iterations were done in the creation of this regression equation using all and a
combination of the following parameters: monthly total burn area, the monthly total number of
fires, the monthly total precipitation, the average monthly temperature, the average monthly fire
radiative power and the average monthly fraction of biomass burned and fuel loadings. While all
of these are important parameters to estimate emissions from biomass burning, the equation with
just burn area and temperature provided the best results (based on correlation coefficient and
mean normalized bias).

Statistical Comparison

There are several methods that can be used to evaluate air quality models (e.g EPA, 1991,
Tong and Mauzerall, 2006). In this study, the mean normalized bias (MNB), the normalized
mean bias (NMB) and the normalized mean error (NME) were used in the comparison between
the NH; emissions from biomass burning calculated in this study and those emissions determined
by the regression model in order to determine the accuracy of the model. The equations for the
statistical comparisons are as follows:

N B 0-E®
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where N is the number of observations, E,, are the emissions projected by the regression model,
and E, are the emissions calculated in this study.

RESULTS & DISCUSSION

On a national scale, there was a general decrease in the number of fires from 2005 to
2015, with an average change of ~2% per year (Figure 1A). However, this trend is not
statistically significant (p > 0.05, R*=0.03). Over the period, there were, on average, 104,267 +
16,461 fires per year, with the highest number of fires occurring in 2012 (132,469) and the
lowest number of fires occurring in 2009 (81,149). When looking at the fire number per year on
a monthly basis, there is a lot of variability year to year (Figure 2A). However, on average, the
monthly fire number peaks in both the spring and the fall. This bimodal, seasonal trend can likely
be attributed to the agricultural burns that occur in the spring and the warm weather (which is
conducive for fires) that occurs in the late summer. The yearly average fire radiative power,
which measures the rate of the radiant heat output of a fire, showed a generally positive trend



(average increase ~8% per year) on a national scale from 2005 to 2015. However, this trend was
not statistically significant (p > 0.05, R = 0.1). The average yearly FRP was 55 + 10 MW, with
the maximum average yearly FRP occurring in 2015 (77 =49 MW) and the minimum yearly
average FRP occurring in 2010 (39 = 10 MW) (Figure 1B). On a monthly scale, FRP values
generally peaked in the summer months, however, the highest monthly average FRP occurred in
January of 2015 (160 MW) (Figure 2B). The average yearly fire brightness temperature, which
is a measure of the photons at a particular wavelength (4 pm) received by the spacecraft (Giglio
et al., 2003; Giglio et al., 2016; NASA, 2018), was approximately constant (average -0.03% per
year), with the yearly average brightness temperatures ranging from 320 K to 324 K (Figure
1C).Similarly, the monthly average brightness temperatures were also approximately constant,
ranging from 312 K to 339 K (Figure 2C). On average, ~200,367 & 64,112 km? of land was
burned from 2005 to 2015, with highest total burn area occurring in 2011 (~305,449 km?) and the
lowest observed burn area occurring in 2010 (81,926 km?) (Figure 1D). While there was
variation year to year in the total burn area, the general trend in area burned increased over the
period (on average ~23% per year). However, this trend was not statistically significant (p >
0.05, R*=0.2). On a monthly scale, the peak burn area varies from year to year (Figure 2D).
However, it is evident that the peak burn area is at a maximum from May to September. This is
expected due to the warmer and dryer conditions that occur in the North American spring and
summer. [t is important to note the limitation of the short study period. While the period is long
enough to get a short term trend, a longer analysis time is needed to determine a definite trend.
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Figure 1. The yearly total number of fires, the yearly average fire radiative power (and
associated standard deviation), the yearly average brightness temperature (and associated
standard deviation), the yearly burn area and the yearly ammonia emissions from fires plotted for
2010-2014. The associated trend line is displayed as a yellow-gold line. Error bars represent the
standard deviation.
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Figure 2. The monthly total number of fires, the monthly average fire radiative power, the
monthly burn area and the monthly NH; emissions from biomass burning for each year in the
study.
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Ammonia Emissions from Biomass Burning
Calculated Emissions

The average annual NH; emissions from biomass burning on a national scale were
approximately 5.4e8 + 3.3e8 kg year for 2005-2015. There was a general increase (on average
~98% per year) in the amount of ammonia emitted from biomass burning (Figure 1E). However,
this trend is statistically insignificant (p > 0.05, R? = 0.3). As discussed above, burn area is a key
contributor to emissions of ammonia. The increase in burn area is important because a larger
burn area likely leads to an increase in fuels (and available nitrogen) and therefore an increase in
the ammonia emitted from the fires. Similar to the observed monthly burn area, there is
variability for the monthly total emissions, particularly in the summer months (Figure 2E).
However, in general, NH; emissions tend to peak in the summer months. This can be attributed to
wildland fire activity, which typically covers a larger burn area and occurs in the summer months
when it is warmer and dryer (particularly in the western US), due to the nitrogen rich fuels (e.g.
forests).

When comparing the number of fires and ammonia emissions from fires (Figure 3B), a
moderate positive relationship was observed (r = 0.55). When comparing ammonia emissions
from fires with the burn area (Figure 3A), a moderate-strong positive relationship was observed
(r=0.70). Because the inventory is built based on the burn area of fires as oppose to the number
of fires, this was unsurprising. Similarly, moderate positive relationships were also observed
when comparing the monthly average FRP (not shown) and brightness temperatures (Figure 3D)
with the average monthly NH; emissions (r = 0.43 and r = 0.57, respectively). A moderate
positive relationship was observed when comparing ambient temperature with ammonia
emissions (r = 0.46, Figure 3C).
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Regression Analysis

A regression model that accounts for both fire size and meteorological conditions was
created to predict monthly NH; emissions from biomass burning (Equation 3; r* = 0.92, n = 48).
When comparing this model (SOM) against the monthly calculated emissions from this study
(Figure 4, Table 3), it was found that the regression model was a factor of 1.18 lower than the
mean observed values and a factor of 0.64 higher than the median observed values. The
aforementioned comparison statistics were done to compare the SOM against emissions
calculated during this study. The mean normalized bias (MNB) was 69%, the normalized mean
bias (NMB) was -0.12% and the normalized mean error (NME) was 0.44%. However, because
much of the data (2010-2013) used to calculate the monthly emissions for this study were used in
the creation of the regression model, this similarity between the model and the observations was
expected. Therefore, to test the SOM further, the modeled emissions were then compared against
the calculcated emissions for 2005-2009 and 2015 (i.e. emissions not used in the creation of the
regression). The results of this showed that the model was a factor of 1.10 lower than the mean
calculated emissions and a factor of 0.61 higher than the median calculated emissions (Figure 5,
Table 4). The comparison statistics for this analysis showed that the MNB = 91%, the NMB =
-0.11% and the NME = 0.72%.

Table 3. Comparison statistics for national monthly NH; emissions for 2010 to 2014.

NH; Emissions

(kg Month™)
Observations
Average 4.5¢7
Standard Deviation 1.0e8
Max 6.5e8
Median 7.7e6
Model
Average 3.8e7
Standard Deviation 5.5e7
Max 2.4e8
Median 1.2¢7
Comparison Statistics
Mean Normalized Bias (%) 69
Normalized Mean Bias (%) -0.12
Normalized Mean Error (%) 0.44
Ratio of average measured value to 1.18
average modeled value
Ratio of median measured value to median 0.64
modeled value
Correlation Coefficient (r) 0.78
Number of Observations 132
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Figure 4. Comparing the predicted NH; emissions with the calculated NH; emissions for
2010-2014 on a log scale. The red line represents the one-to-one trendline where the calculated
NH; emissions = the predicted SOM NH; emissions. The gold line represents the mean bias line
and the purple line represents the median bias line.
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Table 4. Comparison statistics for the national monthly NH; emissions for 2014.

NH; Emissions

(kg Month™)
Observations
Average 4.2¢7
Standard Deviation 9.5¢7
Max 5.8¢e8
Median 8.2¢e7
Model
Average 3.8e7
Standard Deviation 5.2¢7
Max 1.9¢8
Median 1.3¢7
Comparison Statistics
Mean Normalized Bias (%) 91
Normalized Mean Bias (%) -0.11
Normalized Mean Error (%) 0.72
Ratio of mean measured value to mean 1.10
modeled value
Ratio of median measured value to median 0.61
modeled value
Correlation Coefficient (r) 0.80

Number of Observations 84
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Comparison with Other Inventories

Figure 6 compares the results of this study with prominent emission inventories. There is
a lot of variation both between each year as well as between each inventory. On a national scale,
the calculated (average 5.40e8 + 3.31¢8 kg year') and modeled (average 4.58¢8 + 1.33¢e8 kg
year' ) ammonia emissions from biomass burning were found to be, on average, a factor of 1.3
and 1.1, respectively, higher than the US EPA National Emissions Inventory (average 4.04e8 +
3.57e8 kg year') (EPA, 2016; EPA, 2015). Similar to the comparisons between the NEI and the
calculated ammonia emissions from biomass burning in this study, the total yearly ammonia
emissions from biomass burning modeled by FINN (average 9.08¢7 + 1.33¢7 kg year™)
(Wiedinmyer et al., 2011) and the GFED (average 4.14e7 + 9.77¢6 kg year") (van der Werf et
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al., 2017) were both lower than what was calculated in this study. On average, the emissions
calculated and modeled in this study were a factor of 5.9 and 5.0, respectively, higher than the
emissions obtained from FINN and a factor of 13.1 and 11.1 higher than those obtained from the
GFED.
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Figure 6. Comparing the yearly total NH; emissions (on a log scale) from biomass burning
calculated and predicted in this study with the NEI, the FINN and the GFED. Note that 2014 was
not included in the creation of the SOM.

Through the study period, the NEI yearly total NH; emissions from biomass burning were
consistently similar to both the calculated emissions and the SOM predicted emissions. Similarly,
both FINN and GFED were consistently lower than both the NEI and the emissions quantified in
this work. Despite using the same general methodology, the emissions between inventories are
highly variable. Due to both uncertainties in NH; emissions from fires as well as uncertainties in
the products used to obtain emission estimates, it is not surprising that there are major
inconsistencies between each inventory. Variation between fire emission inventories was also
observed by Larkin et al. (2014), who did a similar study comparing several pollutant emissions
(e.g. CO,, CHy, N,O) for CONUS from FINN, GFED, NEI and the EPA Greenhouse Gas
emissions inventories. Similar trends were observed, where the NEI projected the highest
emissions, followed by FINN and then GFED. The differences observed in Larkin et al. (2014)
were attributed to the differences and uncertainties associated with the input parameters, such as
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how prescribed fires were represented, the fuel loadings used as well as how deep organic
combustion was modeled. Variation in and uncertainties associated with all the input parameters
for biomass burning emissions all contribute to disagreement between inventories. Furthermore,
the magnitude of variation in reactive nitrogen emission inventories (including, but not limited to
biomass burning emissions) is extreme due to uncertainties in the strength of the emission
sources as shown by Battye et al. (2017).

CONCLUSIONS

According to the U.S. EPA’s 2014 National Emission Inventory (EPA, 2014), biomass
burning is the second largest emissions source of ammonia (accounting for ~10%) following
agricultural sources. The results of this study showed that on average, there were 5.4e8 + 3.3e8
kg of NH; year emitted across the CONUS for 2005-2015. Through the study period, there was
a general decrease in the number of fires and a general increase in the average fire radiative
power, the total area burned and in the total ammonia emitted from biomass burning. However,
these observed trends were not statistically significant.

A regression model (r* = 0.92, n = 48) was developed in order predict emissions as a
function of fire burn area and ambient temperature. When comparing the regression model with
the results from this study, it was found that the regression model was a factor of 1.18 (MNB =
-69%, NMB = -0.12%, NME = 0.44%) lower than what was observed. Both the calculated and
modeled (i.e. predicted by the statistical regression model) NH; emissions were then compared
against currents fire emission inventories (NEI, FINN, GFED). When comparing the US EPA
National Emissions Inventory for NH3 emissions from fires for the continental United States, it
was found that the NEI was approximately a factor of 1.3 and 1.1 lower than what was calculated
and modeled, respectively, in this study. Similarly, the emissions calculated and modeled in this
study were a factor of 5.9 and 5.0, respectively, higher than the emissions obtained from FINN
and a factor of 13.1 and 11.1 higher than those obtained from the GFED. These discrepancies are
attributed to differences in the emission estimation technique used as well as differences in the
input data used.

Future Work

Due to the short nature of this study, the next step is to extend the study period in order to
conduct a better trend analysis. Furthermore, the data used to determine the fraction of biomass
burned will be updated from the AVHRR Continuous Fields Tree Cover Product to the MODIS
Vegetation Continuous Fields product. This will allow for a more accurate estimate of the
fraction of biomass burned. Changes in the earth’s climate will likely influence both fire strength
and frequency, and therefore influence emissions of ammonia from biomass burning. An increase
in emissions from fires could potentially lead to higher concentrations of ammonia. The
statistical regression model developed in this study will allow for the prediction of ammonia
emissions associated with future climate change. Future directions with this work include
projecting ammonia emissions using future climate scenarios in order to see how emissions will
change as the climate changes.
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