Butterfly effect and a self-modulating El Niño response to global warming
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Butterfly effect and a self-modulating El Niño response to global warming

Filetype[PDF-3.01 MB]



Details:

  • Journal Title:
    Nature
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    El Niño and La Niña, collectively referred to as the El Niño–Southern Oscillation (ENSO), are not only highly consequential but also strongly nonlinear. For example, the maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific Ocean, are larger than the maximum cold anomalies of La Niña, which are centred in the equatorial central Pacific Ocean. The associated atmospheric nonlinear thermal damping cools the equatorial Pacific during El Niño but warms it during La Niña. Under greenhouse warming, climate models project an increase in the frequency of strong El Niño and La Niña events, but the change differs vastly across models, which is partially attributed to internal variability. Here we show that like a butterfly effect, an infinitesimal random perturbation to identical initial conditions induces vastly different initial ENSO variability, which systematically affects its response to greenhouse warming a century later. In experiments with higher initial variability, a greater cumulative oceanic heat loss from ENSO thermal damping reduces stratification of the upper equatorial Pacific Ocean, leading to a smaller increase in ENSO variability under subsequent greenhouse warming. This self-modulating mechanism operates in two large ensembles generated using two different models, each commencing from identical initial conditions but with a butterfly perturbation; it also operates in a large ensemble generated with another model commencing from different initial conditions and across climate models participating in the Coupled Model Intercomparison Project. Thus, if the greenhouse-warming-induced increase in ENSO variability is initially suppressed by internal variability, future ENSO variability is likely to be enhanced, and vice versa. This self-modulation linking ENSO variability across time presents a different perspective for understanding the dynamics of ENSO variability on multiple timescales in a changing climate.
  • Source:
    Nature, 585(7823), 68-73
  • DOI:
  • ISSN:
    0028-0836;1476-4687;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1