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El Niño and La Niña, collectively referred to as El Niño-Southern Oscillation (ENSO), 

are not only highly consequential1-6 but also strongly nonlinear7-14. For example, 

maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific 

Ocean, are larger than maximum cold anomalies of La Niña, which centre in the 

equatorial central Pacific7,8,9. The associated atmospheric nonlinear thermal damping 

cools the equatorial Pacific during El Niño but warms during La Niña15,16. Under 

greenhouse warming, climate models project an increase in frequency of strong El 

Niños and La Niñas, but the change differs vastly across models17, partially attributed 

to internal variability18-23 . Here we show that an infinitesimal random perturbation to 

an identical initial condition, like a butterfly effect24, induces vastly different initial 

ENSO variability, which systematically affects its response to greenhouse warming a 

century later. In experiments with higher initial variability, a greater cumulative 

oceanic heat loss from ENSO thermal damping reduces stratification of the upper 

equatorial Pacific Ocean, leading to a smaller increase in ENSO variability under 

greenhouse warming. This self-modulating mechanism operates in two large ensembles 

with two models each commencing from an identical initial condition but with a 

butterfly perturbation, in a large ensemble with another model commencing from 

different initial conditions27,28, and across climate models participating in the Coupled 

Model Inter-comparison (CMIP) projects29,30. Thus, greenhouse warming-induced 

increase in ENSO variability31, if suppressed initially by internal variability, is likely to 

enhance in the future, and vice-versa. This self-modulation linking ENSO variability 
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39 across time presents a novel perspective for understanding dynamics of ENSO  

variability on multiple timescales and in a changing climate.   

 

Main text  

El Niño and La  Niña events affect  extreme weather, ecosystems, and food production  

worldwide1,2, but their  impacts are highly                 

asymmetric. For example, during the strong 1997 El  Niño event, anomalously  high sea 

surface temperatures (SSTs) occurred in th e equatorial  eastern Pacific, inducing floods in the 

equatorial eastern Pacific regions of Ecuador and northern Peru1,2, and equatorward 

movement of the Intertropical Convergence Zone and the South Pacific Convergence Zone  

leading to catastrophic floods and droughts across the Pacific31. However, during the strong  

1998 La Niña, maximum cold anomalies occurred in the equatorial central Pacific8,12, 

leading to intense atmospheric convection in the western Pacific which caused  catastrophic  

river floods3, severe food shortages, and the  spread of water-borne epidemic diseases4,5. 

This asymmetric impact is governed by  nonlinear ENSO dynamics,  manifested  as Eastern  

Pacific (EP) and Central Pacific (CP) ENSO  regimes, characterised by  an SST anomaly  

centre in the equatorial eastern and central Pacific, respectively8 .   During CP El Niño,  

eastward displacement of western Pacific  atmospheric deep  convection is limited, and 

anomalous eastward oceanic  advection of warm  water dominates32,33. During CP La Niña, a 

shallower than normal equatorial thermocline in the central Pacific, typically  due to heat  

discharge from  a prior EP El Niño, facilitates  the fast growth of co ld anomalies, contributing  

to negative SST skewness there34. In the normally cold and dry eastern Pacific, cool  

anomalies are curtailed by a limited upward displacement of the shallow climatological mean  

thermocline.  This setting instead  favours es tablishment of atmospheric deep convection  

during strong warm  anomalies of EP El Niño8-11; this triggers a nonlinear Bjerknes positive 

feedback, in w hich the  response of zonal winds increases nonlinearly  with positive  SST 

anomalies, contributing to positive SST skewness9,11,14.  

The ENSO nonlinearity is depicted using the first two modes from Empirical Orthogonal 

Function (EOF) analysis35 of  monthly SST anomalies8,10,13,17, each with a spatial pattern and a 

principal component (PC) time  series (See Methods section ‘Depiction of ENSO  

nonlinearity’). EP-ENSO is described by  an E-index, defined as  (PC1-PC2)/√2  (Ref. 8), and 

CP-ENSO by a C-index, defined as (PC1+PC2)/√2, such that the associated maximum warm  

anomaly is in the  equatorial eastern and central Pacific, respectively. The relationship  

between the first two PCs is nonlinear8, as measured by a quadratic relationship PC2(t) = 

αD[PC1(t)]2 + βDPC1(t) + γD  (Refs. 10, 13, 17). A greater dynamical nonlinearity  coefficient  

|αD| means stronger skewness in the E-index and C-index, therefore stronger nonlinearity of 
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the ENSO system, and a clearer differentiation of the two ENSO regimes17. Here, we show 

that because ENSO is nonlinear, a tiny perturbation, akin to a flap of a butterfly wing36, to an 

otherwise identical initial condition leads to a highly different ENSO evolution in the ensuing 

period, which in turn systematically modulates ENSO’s response to greenhouse warming 

down the track. 

Butterfly effect and ENSO across time 

We examine such butterfly effects using 40 designated experiments of a fully coupled model 

(CESM-LE) (Ref. 25) (See Methods section ‘Outputs of butterfly model experiments’), 

before assessing other large ensembles. The CESM-LE simulates a multi-member ensemble 

mean αD of -0.37, with an inter-experiment range of -0.29 to -0.46 that encompasses the 

observed -0.31, and a reasonable ENSO variability pattern (Fig. 1a). This is associated with a 

reasonable simulation of the equatorial eastern Pacific cold tongue region where the nonlinear 

Bjerknes feedback operates10,11,13,37, in turn ensuring a reasonable simulation of zonal 

advection, atmospheric thermal feedbacks, and less error compensation37-41. The butterfly 

experiments commence from 1920 under historical anthropogenic and natural forcings to 

2005 and thereafter the Representative Concentration Pathway 8.5 (RCP8.5) future 

greenhouse-gas emission scenario29 to 2099. An infinitesimally small random perturbation of 

the order of 10-14 °C in surface temperatures is added to an otherwise identical initial 

condition, possessing memory and inertia of the same internal variability. ENSO nonlinearity 

is characterised by the C-index and E-index obtained from an EOF analysis of quadratically 

detrended monthly SST anomalies over the whole 180 years (1920-2099). Removing the 

ensemble mean as a way of detrending makes virtually no difference to our result. 

Under RCP8.5, there is little inter-experiment difference in global mean temperature or 

warming pattern featuring enhancement of the equatorial Pacific upper-ocean stratification 

that leads to an increased ocean-atmosphere coupling and increased E-index variability17 

(Extended Data Fig. 1, a-d). A total of 36 out of 40 experiments generate increased E-index 

variability (Fig. 1b, c). The multi-member ensemble increase is significant above the 99.9% 

confidence level, but vast inter-experiment differences exist. 

To understand these differences, we examine ENSO statistics in the first 50 years (1920-

1969). As the butterfly effect acts on the nonlinear system, ENSO SST variability over this 

initial period differs substantially from one experiment to another, as evident in the amplitude 

of E-index variability, and in frequency of strong El Niño and strong La Niña events, defined 

as E-index>1.5 s.d. and C-index<-1.5 s.d., respectively (Fig. 1b, c, x-axis). A higher E-index 

amplitude is associated with a higher frequency of strong El Niño, which is in turn conducive 

to strong La Niña34, contributing to a greater C-index amplitude (Extended Data Fig. 2). 
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After the butterfly perturbati on, what happens to ENSO  is somewhat random. Owing to  

nonlinear dynamics, once an El Niño, La Niña, or a neutral state, occurs, it leads to a different 

subsequent  evolution. A n initial strong El Niño would favou r a subsequent strong La Niña7,9; 

an initial neutral state,  on the other hand,  might persist, or be followed by an El  Niño or La 

Niña; and an initial La N iña is likely  to  continue7,9,10. Thus, the different realisations of the 

first event lead to subsequent events  that  are never the same.  

Strikingly, in experiments with initially stronger ENSO variability and a  higher frequency of 

strong ENSO  events, their amplitude and frequency  in the future a century later are 

systematically smaller, and vice versa (Fig. 1b, c). Co mparing the initial (1920-1969) and the 

last 50 (2050-2099) years, a total of 36 out of 40  experiments produce an inc reased E-index  

variability, but the increase ranges from a small percentage to 180%. ENSO rectification, in  

which a decadal period of high ENSO  variability  rectifies on  the mean climate leading to an  

El Niño-like decadal state in turn promoting ENSO variability42, would not explain the time  

scale or the systematic  change. Below, we show that  initial strong ENSO variability plants 

the seeds for its small future increase, through a cumulative heat loss to the atmosphere.   

Cumulative heat loss due to nonlinearity  

Atmospheric thermal damping is the dominant negative  feedback on ENSO. The  associated  

air-sea  heat flux  variability in the equatorial  Pacific6,16,37,39,43  is in  turn dominated by  ENSO,  

increasing with ENSO amplitude (Extended Data Fig. 2b, d) (see Methods section  

“Atmospheric thermal feedback and its non linearity”). Further, this damping is nonlinear15,16  

(Extended  Data Fig.  3a, b). For example, in the equatorial eastern Pacific region, when El  

Niño warm SST anomalies establish atm ospheric convection, increased cloud cover   leads to  

reduced incoming shortwave radiation, damping the original w arm  anomalies; this represents  

an  anomalous oceanic heat loss to the atmosphere, and is part of the El Niño discharge 

process44. Damping of La Niña  cold anomalies is weaker than damping of El Niño warm  

anomalies, and represents an anomalous heat input into the ocean,  as part of the La Niña  

recharge, but the associated heat flux is smaller because of a smaller amplitude of La Niña.  

The nonlinear damping can be represented as NHF (t) = α [E-index(t)]2 
T + βT E-index (t) + γT, 

where NHF(t) is net heat flux positive into the ocean, and subscript T denotes 

“thermodynamical”. The nonlinear coefficient αT is negative.  These properties are reproduced  

by the butterfly effect  experiments (Fig. 2a, b). 

Because of ENSO’s nonlinear dynamics and thermodynamics, after several ENSO events,  

there  is a net oceanic heat  loss in the equatorial central and  eastern Pacific. To illustrate this,  

we construct m onthly  relative  surface flux field [Rel-NHF(x, y,  t)]  in all  experiments  

referenced to the  common monthly climatology averaged over the  70-year (1850-1919) 

period prior to the experiments,  yielding 40 time-evolving Rel-NHF(x, y, t).  No detrending  
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is carried out to avoid removing any trend induced by ENSO thermal damping. For example, 

accumulating the relative heat flux at a grid point on the equator (105oW) over the initial 50 

years shows a cumulative heat loss ranging from +334.3 to -2320.9 W m-2 over the 50 years, 

or 600 months across the 40 experiments (Fig. 2c, y-axis) (see also Extended Data Fig. 4). 

Experiments with greater initial ENSO variability systematically produce a greater 

cumulative heat loss, which can be represented by variability of detrended heat flux (Fig. 2d). 

Modulation through ocean stratification 

Accumulating the relative heat flux over the initial 50 years at grid-points yields 40 fields of 

cumulative heat fluxes. Regression of these fields onto inter-experiment E-index variability 

of the initial 50 years shows that experiments with stronger initial E-index variability 

systematically produce a greater cumulative oceanic heat loss in the equatorial central-to-

eastern Pacific (Fig. 2e). Extension to the initial 100-year (1920-2019) period produces 

similar results (Extended Data Figs 4 and 5). 

We average upper equatorial Pacific vertical temperatures across two groups of 10 
experiments each, which produce top 10 highest and bottom 10 lowest values of initial E-
index variability (blue star and orange diamond respectively, Fig. 1a) and calculate the trend 
over the first 50 (1920-1969), 100 (1920-2019), and 150 (1920-2070) years. Difference in the 
trend between the two groups (high variability minus low variability) over each period is 
mostly due to difference in cumulative heat flux associated with the difference in ENSO 
variability, because greenhouse warming-induced changes are removed by the subtraction.    
By the first 50 years, in experiments with greater initial ENSO variability, the greater 

cumulative oceanic heat loss in the equatorial Pacific leads to a greater heat discharge over 

the upper equatorial Pacific, initially maximum in the western Pacific, with a shallowed 

thermocline in the western but deepened thermocline in the eastern equatorial Pacific (Fig. 

3a). Difference in other fields shows warmer surface equatorial eastern Pacific supported by 

weaker equatorial trade winds as a result of rectification by higher initial ENSO variability42 

(Extended Data Fig. 6). The rectified surface warming tends to facilitate atmospheric 

convection45,46, maintaining initial high ENSO variability, which further increases the upper-

ocean heat loss. The associated cooling subsequently spreads eastward (Fig. 3b), and 

eventually leads to cooling over much of the upper equatorial eastern Pacific by the end of 

150 years (Fig. 3c), in an evolution analogous to the El Niño discharge process but on a long 

time scale. The associated upper-ocean cooling offsets greenhouse warming-induced upper-

ocean warming and reduces enhancement in the associated upper-ocean stratification 

(Extended Data Fig. 1c), and the associated strengthening in ocean-atmosphere coupling. 

Thus, through its impact on the upper ocean, the ENSO system remembers its own past 

variability and modulates its future behaviour.  

Robustness in other large ensembles 
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We examine two large ensembles with two other  models, GFDL-CM3 with  20 experiments  

(Refs. 26, 27)  and GFDL-ESM with 30 experiments (Refs. 27, 28), both simulating strong  

nonlinear dynamics and thermodynamics (Extended Data Fig. 7), and both  under historical 

and RCP8.5 emission scenario (See Methods section “Large ensembles with other  

models”). For GFDL-CM3, an identical initial condition for all  experiments is perturbed  

with a butterfly effect, as in CESM-LE, whereas for GFDL-ESM, the initial conditions are 

different. Under greenhouse warming, the majority  of the experiments in GFDL-CM3  

generate an increase in E-index variability, opposite to GFDL-ESM2M. Despite the 

contrasting response, in both models, experiments with smaller initial  E-index variability  

systematically generate  a greater  increase (or a smaller reduction) in the future E-index 

variability (Fig. 4a, b). The results underscore the robustness of the self-modulating  

mechanism.    

Self-modulation in an ensemble of models 

We examine models  participating in CMIP5 and CMIP6 forced by historical  and RCP8.5 (or 

approximately equivalent SSP5-8.5) emission  scenario29,30 to 2099 (see Methods section  

“CMIP5 and CMIP6 models”). In this case, the initial condition, internal variability, and 

climate  sensitivity are different across the models. The  C-index and E-index for each  model  

are obtained from EOF  analysis on quadratically detrended monthly  SST anomalies  over the 

200 years (1900-2099). Compared to  the butterfly experiments, the dynamic and  

thermodynamic nonlinear coefficients |αD| and |αT| are generally  smaller (Extended Data  Fig.  

7). We select 18 out of 34 CMIP5, and 9 out of 15 CMIP6 models that are presently available 

to us, based on their ability to simulate an  |αD| greater than 50% of the observed  as in Ref. 17.  

These 27 models simulate an αT <0 ( Extended Data Fig. 7; Extended Data Fig. 3c, d ). Overall,  

models with a stronger dynamical nonlinear coefficient also simulate a greater  

thermodynamical nonlinear coefficient13,40.  As in the butterfly effect experiments, a greater 

E-index variability  is systematically associated with a higher frequency of strong ENSO  

events, and stronger heat flux variability in the eastern Pacific (Extended Data Fig.  8). 

A total of 22 out of the 27 (81%) models generate increased E-index variability. Importantly,  

models simulating greater ENSO  variability in the initial 50-year period (1900-1949) 

systematically project a smaller increase in ENSO variability  more than a century later (2050-

2099), and vice versa (Fig. 5a).  Greater E-index  variability is as sociated with greater eastern  

Pacific heat flux variability  (Fig. 5b), and the associated greater heat loss leads to a slower  

warming in the upper equatorial Pacific  (Fig. 5c). The cooling offsets greenhouse warming-

induced enhancement in upper-ocean stratification, leading to a smaller future increase in  

ENSO variability  and in frequency of strong ENSO events (Fig. 5d, e). Difference in two 

groups of 10 models with top 10 highest and bottom 10 lowest values of  initial ENSO 

variability  shows greater variability and a greater E-index increase in the group with smaller 
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initial variability (Extended Data Fig. 9), consistent with the  butterfly effect experiments. 

Thus, despite  the substantial differences among these models, the self-modulating ENSO 

response operates, underscoring its robustness. Increasing ensemble  members does not alter  

our finding (Extended Data Fig. 10). 

Conclusion and implications 

Because the ENSO system  is nonlinear, a butterfly  perturbation leads  to vastly different 

ensuing ENSO variations, which systematically modulate ENSO’s response to greenhouse 

warming as  much as a  century  later. The initial behaviour can be induced by  decadal  

variability, stochastic forcing, or an infinitesimally  small perturbation  in initial conditions as  

seen in CMIP models. If stronger ENSO variability  is promoted initially, ENSO nonlinear  

thermal damping causes a  larger upper-oceanic heat loss to the atmosphere, which reduces 

greenhouse warming-induced enhancement in the equatorial Pacific upper-ocean  

stratification.  This then  decreases the associated strengthening in ocean-atmosphere coupling, 

reducing greenhouse warming-induced increases in  ENSO variability  at a later time. On the 

other hand, if ENSO  variability  is suppressed initially, stronger future ENSO variability  

ensues.  

Our discovery  of ENSO self-regulation offers  a novel perspective for understanding ENSO in 

a changing climate, with important implications. The self-regulation increases the range of 

possibilities in the projected ENSO changes over the next  century, because of past and future  

decadal variability in the system. In this context, the reported decrease in ENSO variability in 

recent decades47-50 could potentially  enhance the projected increase in ENSO variability  (by  

~35% from the current level, see Methods section “Impact of  recent low ENSO variability”), 

which, though, could subsequently be reduced if there is higher-than-normal variability  after 

2020. Further, there  is no deterministic  equilibrium  response of ENSO to greenhouse 

warming, because ENSO  will continue to self-regulate in a non-stationary w ay around the 

equivalence of a chaotic  “strange attractor” for a given level of greenhouse forcing.  More 

broadly, ENSO is shaped by its own past and influences  its own future, raising  the possibility  

that  the  self-regulation  mechanism operates on timescales transcending  multidecadal and  

centennial, potentially  contributing to ENSO  variations as observed in the paleoclimate  

record.  

  

Full methods and any associated references are  available in the online version of the paper. 
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Figure captions 

Fig. 1 | Butterfly effect on ENSO variability. Shown are results from 40 experiments from 

the CESM-LE under historical (up to 2005) and thereafter representative concentration 

pathway 8.5 (RCP8.5) to 2099. Each experiment starts from identical initial condition in 1920 

with small perturbation applied at a level of machine round-off error, which is referred to as 

the “bufferfly effect”. a, SST standard deviation over the equatorial Pacific for the common 

70-year period (1850-1919), showing typical SST variability pattern. b, c, The relationship of 

E-index standard deviation (s. d.), or strong ENSO frequency, at the initial 50-yr period 

(1920-1969) with their future change. The change is defined as the difference between last 50 

years (2050-2099) and the initial 50 years, scaled for each member by the rate of global SST 
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warming in each experiment. The butterfly effect results in different initial ENSO variability 

and the subsequent changes. In experiments with stronger initial ENSO variability, or higher 

frequency of strong ENSO events, their future increase is systematically smaller, supported 

by highly negative correlations significant above the 99% confidence level. Strong ENSO 

frequency in c is defined as the total number per 50 years of strong El Niño events (E-index > 

1.5 s. d.) plus the total number of strong La Niña events (C-index < -1.5 s. d.) in the ENSO 

peak season of December-February. The blue stars and orange diamonds in b and c represent 

the 10 experiments with the weakest and strongest initial E-index variability, respectively. 

Correlation and p-value of a linear fit (red solid line) are also shown. 

Fig. 2 | Impact on equatorial Pacific Ocean heat balance arising from butterfly effect. 

Shown is from a large ensemble with  CESM-LE.   a, b,  Relationship between monthly E-

index and monthly net heat flux over the eastern Pacific (5°S-5°N, 150°W-90°W), and 

between monthly C-index and monthly central Pacific (5°S-5°N, 160°E-90°W) net 

quadratically detrended heat flux into the ocean (W m-2) for the initial 50 years (1920-1969) 

in CESM-LE. The red curve represents a nonlinear fit NHF (t) = αT[E-index(t)]2 + βT E-index 

(t) + γT, where NHF(t) is net heat flux positive into the ocean, and subscript T denotes 

“thermodynamical”. The nonlinear fit is statistically significant above the 99% confidence 

level. c, Inter-experiment relationship between E-index variability (1920-1969) and 

cumulative ocean heat loss (at equator 105oW, indicated by black ‘+’ in e). Before 

accumulation,  monthly net heat flux fields referenced to the 70-year (1850-1919) common 

monthly climatology prior to butterfly effect are constructed. d, Inter-experiment relationship 

between heat flux variability (quadratically detrended) and the cumulative heat flux, showing 

a greater cumulative heat loss is associated with greater heat flux variability. The blue stars 

and orange diamonds in c and d represent the 10 experiments with the weakest and strongest 

initial E-index variability, respectively. Correlation and p-value of a linear fit (red solid line) 

are shown. e, Inter-experiment regression of 40 cumulative heat flux fields onto 40 values of 

E-index variability, both over the initial 50 years (1920-1969), showing an ENSO pattern of 

cumulative heat flux. In experiments in which the butterfly effect leads to greater initial 

ENSO variability, a greater cumulative ocean heat loss is generated along the equator. 

Statistical significance above the 90% and the 95% confidence level based on a two-tailed 

Student’s t-test is indicated as black stippling and the green solid contour, respectively. 

Fig. 3. | Self-modulating mechanism of ENSO response to greenhouse warming. a, 

Difference in linear trends of mean ocean temperature of the equatorial Pacific (average over 

5°S-5°N) over the first 50 years (the 1920-1969 period) between average of the 10 

experiments with strongest initial E-index variability (orange diamonds in Fig. 1a) and 

average of  the 10 experiments with weakest  initial E-index variability (blue stars in Fig. 1a). 

b, c, The same as a but for trends over the first 100 and 150 years, respectively. Statistical 

significance above the 90% and the 95% confidence level is indicated by black stippling 
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and the green solid contour, respectively. In experiments with greater initial ENSO variability, 

the greater cumulative oceanic heat loss in the equatorial Pacific leads to a slower warming 

over the upper equatorial Pacific by the end of the 50 years, with shallower thermocline in the 

west and deeper thermocline in the east (a), but subsequently cooling over the central-to-

eastern (b), and eastern (c) equatorial Pacific, analogous to evolution of El Niño heat 

discharge but on a longer time scale. This process weakens greenhouse warming-induced 

stratification enhancement in the upper equatorial Pacific Ocean, leading to a smaller increase 

in ocean-atmosphere coupling. Consequently, in experiments with greater initial ENSO 

variability, the future increase in ENSO variability is weaker. 

Fig. 4 | Robustness of ENSO self-modulation in large ensembles with other models. 

Shown is relationship between E-index standard deviation for the initial 50-years and its 

future change. The change is defined as the difference between last 50 years and the initial 50 

years, scaled for each member by the rate of global SST warming in each experiment.  a, 

GFDL-CM3, which has 20 members commencing from 1920. The initial 50-years is 1920-

1969 and last 50-years is 2050-2099. Each member starts from an otherwise identical initial 

condition except a butterfly perturbation to the atmosphere component, generating the initial 

ensemble spread. b, GFDL-ESM2M, which has 30 members commencing from 1950. The 

initial 50-years is 1950-1999 and the last 50-years is 2050-2099. Each member commences 

from a different initial coupled model state taken as the snapshot at the end of 30 days in 

January 1950, respectively. Correlation and p-value of a linear fit (red solid line) are also 

shown. 

Fig. 5. | Self-modulating mechanism of ENSO response in CMIP5 and CMIP6 models. 

Shown are 27 models, i.e., 18 out of 34 CMIP5 models and 9 out of 15 CMIP6 models that 

produce a dynamic nonlinear coefficient αD <-0.155 (i.e. 50% of the observed amplitude17, 

and thermodynamic nonlinear coefficient αT <0. a, Inter-model relationship between initial 

50-year (1900-1949) E-index variability and its future change (2050-2099 minus 1900-1949). 

As in the butterfly effect experiments, a greater initial E-index variability leads to a smaller 

future increase in E-index variability. b, Inter-model relationship showing greater initial 50-

year (1900-1949) E-index variability is associated with greater initial heat flux (5oN-5oS, 

150oW-90oW), a surrogate of cumulative ocean heat loss. c, Inter-model regression of mean 

equatorial (average over 5oS-5oN) upper-ocean temperature change (2050-2099 minus 1900-

1949) onto the initial 50 years (1900-1949) heat flux variability. Future changes are scaled by 

the corresponding global-mean SST warming in each model. Black stippling and green solid 

contours indicate statistical significance above the 90% and 95% confidence level, 

respectively, based on a two-tailed Student’s t-test. Greater initial variability in ENSO and 

the associated greater heat loss contributes to a weaker upper equatorial Pacific Ocean 

warming. d, e, Inter-model relationship showing a greater initial (1900-1949) cumulative heat 

loss as indicated by greater heat flux variability leads to a smaller future increase (2050-2099 
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minus 1900-1949) in E-index variability and in frequency of strong ENSO events. Strong 

ENSO frequency in e is defined as the total number per 50 years of strong El Niño events (E-

index > 1.5 s.d.) plus the total number of strong La Niña events (C-index < -1.5 s.d.) in the 

ENSO peak season of December-February. Correlation and p-value of a linear fit (red solid 

line) in scatter plots a, b, d, e are also shown. 

METHODS 

Depiction of ENSO nonlinearity. To depict ENSO nonlinearity, at least two indices are 

needed and this can be obtained from a combination of the first two modes from Empirical 

Orthogonal Function (EOF) (Ref. 35) analysis of monthly SST anomalies8,10,13,17, in an 

equatorial domain (15°S–15°N, 140°E–80°W). Each mode is described by a spatial pattern 

and a principal component (PC) time series that is scaled to have a variance of unity. The 

first principal mode captures the classical El Niño pattern, while the second mode depicts 

anomalous east-minus-west SST anomalies across the equatorial Pacific, anomalously warm 

in the central Pacific but cold in the eastern Pacific. ENSO is reflected by a nonlinear 

relationship between the first two PCs, which is measured by a quadratic relationship8,10,13,17 

PC2(t) = αD[PC1(t)]2 + βD PC1(t) + γD (Subscript D indicates “dynamical”). A greater |αD| 

means a higher level of nonlinearity, stronger skewness in the E-index and C-index, and 

therefore stronger nonlinearity of the ENSO system, and clearer differentiation of the two 

types of ENSO events17. For the observed, the value of αD is -0.31 (Ref. 17). The E-index is 

defined as (PC1-PC2)/√2 (Ref. 8), such that the associated maximum warm anomaly is in 

the equatorial eastern Pacific. The C-index is defined as (PC1+PC2)/√2 , such that the 

associated maximum cold anomaly is in the equatorial central Pacific. The two indices 

describe EP- and CP-ENSO regimes, each associated with a suite of distinct processes that 

lead to the positive and negative skewness in the E-index and C-index, respectively, as 

discussed in main text. 

Butterfly effect experiments. We take 40 members of simulation experiments using a 

climate model (CESM-LE) to examine the impact of internal variability. These experiments 

are identically subject to greenhouse warming which follow the CMIP5 design protocol25 

with historical emissions of greenhouse gases applied from 1850/1920 to 2005 and RCP8.5 

forcing from 2006 to 2100. Ensemble member 1 was carried out from 1850, then the other 

members are created from perturbations of ensemble member 1 in 1920. The initial condition 

is identical (end of 1919), except with an imposed infinitesimally small random perturbation 

to the atmospheric state at machine level round-off error25 (10-14 oC in surface temperature) 

at the beginning of 1920 that represents small perturbation equivalent to the flap of a 

butterfly wing. Therefore, these experiments possess the same memory and inertia of initial 

internal variability. Each member then evolves freely, and is subject to stochastic processes, 

thus any ensuing difference between model experiment members is due to internal variability. 
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CP- and EP-ENSO in these experiments are characterized by C-index and E-index, 

respectively, as in the observed. Overall, the model simulates a reasonable level of nonlinear 

properties of ENSO, with a multi-member ensemble mean αD of -0.37, compared with an 

observed value of -0.31 (Extended Data Fig. 7). 

Atmospheric thermal feedback and its nonlinearity. Atmospheric heat flux into the 

equatorial ocean plays an important role in the ENSO cycle and usually represents a negative 

feedback, dominated by shortwave and latent heat flux feedbacks15,16. The shortwave 

component can be highly nonlinear but underestimated in most climate models, mainly 

associated with a cold equatorial mean SST bias and is better represented in models with a 

realistic mean state of the rising branch of the Walker Circulation16,39,40 (Extended Data Fig. 

7). During an El Niño, a warmer SST leads to an increase in atmospheric convection, high 

clouds, and a decrease in surface shortwave heat flux; this feedback is negative. During La 

Niña, while the opposite is generally true but tends to be weaker, because a cold SST 

anomaly may also stabilise the atmospheric boundary layer and promote the formation of 

stratiform boundary layer clouds51,52, decreasing shortwave heat flux at the surface. Thus, the 

atmospheric thermal feedback damps warm SST anomalies but the damping weakens for 

cold SST anomalies. We describe the level of nonlinearity in atmospheric thermal damping 

by the quadratic relationship NHF (t) = αtT[E-index(t)]2 + βT E-index (t) + γT, where subscript 

T denotes “thermodynamical” representing thermal damping, and NHF(t) is the net heat flux 

at a grid-point, positive into the ocean. Because the damping increases with ENSO amplitude, 

net heat flux variability increases with ENSO variability. In conjunction with ENSO 

nonlinearity, that is, greater El Niño amplitude than La Niña amplitude, the thermal feedback 

leads to a net heat loss to the atmosphere. This depiction of nonlinear damping was applied 

to re-analysis datasets and outputs from coupled global climate models. 

We construct time series of net heat flux anomalies over the eastern equatorial Pacific, 

referenced to the first-100 and first 70-year climatology, for CMIP models and butterfly 

effect experiments, respectively. As done for ENSO SST, we quadratically detrend the time 

series over the full period and normalise the time series with the standard deviation over the 

full period. Variability of the first 50 years or last 50 years for each model or experiment is 

then calculated from the normalised time series. An exception is cumulative heat flux shown 

in Fig. 2b, c, which shows raw data cumulative over the first 50 years without detrending of 

heat flux relative to monthly climatology averaged over the previous 70 years (common 

period for all experiments) to give readers a gauge of the real amplitude. 

To diagnose the observed thermodynamic nonlinearity, we use three SST reanalysis products 

and two atmospheric reanalyses. We focus on the 1979-2017 period, which is common to all 

datasets, and data quality is high. These reanalyses include: Five ensemble members of 

ORA-s5 (ECMWF Ocean Analysis System: ORA-s5)53 containing both SST and surface heat 
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553 flux fields;  HadISST v1.1 (Hadley Centre Sea  Ice  and Sea Surface Temperature dataset  

version 1.1)54; ERSST v5 (Extended Reconstructed Sea Surface Temperature version 5)55; 

NCEP/NCAR reanalysis (the National Center for Environmental Prediction and the National  

Center for Atmospheric Research global reanalysis)56 and ERA5 (ECMWF the fifth major  

global reanalysis)57. Monthly detrended anomalies are constructed with reference  to the mean  

climatology over the full period. EOF analysis on monthly SST anomalies are  conducted to  

obtain E-ind ex and C-index. Heat flux averages over the equatorial central Pacific (5°S-5°N, 

160°E-150°W) and eastern Pacific (5°N-5°S, 150°W-90°W) are obtained and the 

relationship is shown in Extended Data Fig. 3. 

Large ensembles with other models. We examine another two sets of   large ensembles with  

two different fully coupled models under historical and RCP8.5 emission scenario. These are 

GFDL-CM3 (Refs. 26, 27) and GFDL-ESM2M  (Refs. 27,  28),  both simulating strong 

nonlinear ENSO dynamics and thermodynamics  (See Extended Data Fig. 7). There are  20  

experiments with GFDL-CM3 commencing from 1920, and 30 experiments with GFDL-

ESM2M commencing from  1950 all under historical and RCP8.5 emission scenario27 . For 

the GFDL-CM3, all 20  members begin from a single coupled model state, with  a butterfly  

perturbation introduced in the atmospheric component,  as in CESM-LE. For GFDL-ESM2M, 

the initial conditions for the 30 ensemble members for 1 January  1950 differ in the  state of  

the atmosphere/land/ocean/sea ice components of the Earth system  model, accomplished by  

using a model state snapshot  at the end of days 1–29 in January 1950 as the initial model 

states for 1 January 1950 for each of  the ensemble members 2–30, respectively (Ref. 28). 

CMIP5 and CMIP6 models. The EOF approach  was applied to  reanalysis datasets, and  

outputs from  CMIP5 forced by historical forcing up to 2005 and RCP8.5, and CMIP6 forced    

by historical forcing up  to 2014  and thereafter  approximately equivalent  to RCP8.5 (or  

Shared Socioeconomic Pathway-5-8.5) emission scenario to 2099 (Refs. 29, 30), covering a 

period of transient CO2 increase into  2099. Monthly anomalies referenced to the climatology  

of the first 100 years were constructed and quadratically  detrended. We select 27 CMIP5  and 

CMIP6 models that can simulate ENSO nonlinearity  as measured by  αD. One experiment  

(the first simulation) from each model is  used, covering the period 1900–2099. We compare 

results in a group of models w ith an |αD| greater than at least h alf of the observed, as in Ref.  

17. These  models simulate the nonlinear atmospheric thermal feedback with  an  αT that is  

negative and all  models but one produce an αT greater than 50% of the observed amplitude 

(see Extended Data Fig. 7). Increasing ensemble members does not alter our finding  

(Extended Data Fig. 10).  

Impact of recent low ENSO variability. Based  on a reanalysis54 , observed E-index  

variability  over the 2000-2019 period is at 0.87  s.d., that is 0.13 s.d. lower than the average 

over the 120 y ears since 1900, set at 1.0 s.d.. To assess the impact of the current  low level of  
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E-index variability, we examine the inter-model relationship across the 27 se lected models 

between the current  (2000-2019) and future (2050-2099) E-index  variability, and obtain a 

sensitivity of ~0.55 s.d. increase in future E-index per 1.0 s.d. decrease in the current  E-index,  

which is  statistically significant above the 99% confidence level. The multi-model ensemble  

average increase  in E-index variability over the two periods is 0.19 s.d.. Using the sensitivity  

and the enormous decrease in current E-index variability of 0.13 s.d., w e  estimate that  the  

recent low E-index variability  has the potential  to increase future E-index variability by  ~37% 

(that is, 0.13  x 0.55 / 0.19) , everything else being equal. By  the same  mechanism, any   

increase  in variability after 2020 will have an  opposing effect  on the projected change.      

Data availability. Data related to the paper can be downloaded from the following: 

•  ORA-s5, https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis; 

•  HadISST v1.1, https://www.metoffice.gov.uk/hadobs/hadisst/; 

•  ERSST v5, https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-

reconstructed-sea-surface-temperature-ersst-v5/; 

•  NCEP/NCAR reanalysis, 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surfaceflux.h 

tml/;  

•  ERA5, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5; 

•  CMIP5, https://esgf-node.llnl.gov/projects/cmip5/; 

•  CMIP6, https://esgf-node.llnl.gov/projects/cmip6/; 

•  CESM-LENS,   http://www.cesm.ucar.edu/projects/community-projects/LENS/data-

sets.html  

 

Code availability. Codes for calculating EOF, the parameter |αD| can be downloaded from:  

https://drive.google.com/open?id=1d2R8wKpFNW-vMIfoJsbqIGPIBd9Z_8rj. All codes are  

available upon request.  
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Captions for Extended Data 

Extended Data Fig. 1 | Ensemble averaged warming and ENSO change in the butterfly 

effect experiments. Shown are from 40 butterfly effect experiments of CESM-LE. a, Time 

series of global mean sea surface temperature (SST).  The red curve represents the ensemble 

mean. b, Multi-experiment ensemble mean SST and wind stress difference between the last 

50-year (2050-2099) and the initial 50-year (1920-1969) periods. c, Same as in b but for 

ocean temperature along the Equator averaged between 5°S-5°N, showing an intensification 

of stratification along the equatorial upper ocean as in Ref. 17, enhancing the ocean-

atmosphere coupling. d, E-index variability in the initial 50-year period (blue bars) and the 

last 50-year period (red bars) for each experiment and the multi-experiment ensemble mean. 

The error bars represent one standard deviation value of inter-experiment E-index variability 

for the two periods, respectively. 

Extended Data Fig. 2 | ENSO properties in initial and future climate in the butterfly 

effect experiments. Shown are from 40 butterfly effect experiments of CESM-LE. a, Inter-

experiment relationship between E-index and C-index standard deviation (s. d.) for the initial 

50-year (1920-1969) period. b, As in a, inter-experiment relationship between E-index 

variability and variability of eastern Pacific (EP, 5°S-5°N, 150°W-90°W) net heat flux (s. d.). 

c, d, The same as a, b, respectively but for the future 50-year (2050-2099) period. The blue 

stars and orange diamonds represent the 10 experiments with the weakest and strongest initial 

E-index variability, respectively. Experiments with a greater E-index variability 

systematically produce greater heat flux variability, and greater C-index variability as strong 

El Niño events lead to strong La Niña events. These properties are seen in both initial and 

future climate. Statistics (i.e. correlation and p-value) of a linear fit (red solid line) are shown. 

The relationship is statistically significant above the 99% confidence level. 

Extended Data Fig. 3 | Nonlinear thermal damping aggregated over observational 

datasets and over 27 selected CMIP5 and CMIP6 models. a, Observed monthly E-index 

vs normalized monthly surface net heat flux anomalies over the eastern Pacific (EP, 5°S-5°N, 

150°W-90°W) for the period of 1979-2017. b, As in a, but for observed monthly C-index vs 
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normalized monthly surface net heat flux anomalies over the central Pacific (CP, 5°S-5°N, 

160°E-150°W). Also shown are the quadratic fit (red solid line), for example, with E-index, 

in terms of NHF (t) = ்ߙ [E-index(t)]2 + βT E-index (t) + γT, and corresponding 

thermodynamic nonlinear coefficient “α୘ ” associated with EP and CP ENSO. Three SST 

reanalysis products and two atmospheric reanalyses53-57 are used here (see Methods 

“Atmosphere thermal feedback and its nonlinearity”). c, d, As in a, b, respectively, but for 27 

selected CMIP5 and CMIP6 models (see Extended Data Fig. 7). 

Extended Data Fig. 4 | ENSO thermal damping and cumulative ocean heat flux in the 

butterfly effect experiments.  Shown are from 40 butterfly effect experiments of CESM-LE. 

Illustration is given in a, b, time series E-index (black) and net heat flux (red) in the eastern 

Pacific (at equator 105oW) in experiments with strongest (Run 14) and weakest (Run 24) E-

index variability in the initial (1920-1969) 50 years.  c, Eastern Pacific cumulative net heat 

flux for the two experiments. Raw monthly net heat flux fields referenced to the 70-year 

(1850-1919) common monthly climatology prior to butterfly effect is constructed first before 

accumulation. Greater cumulative heat loss by 1969 (end of the initial 50 years, indicated by 

the vertical black line) is generated due to greater initial ENSO variability, reducing upper 

ocean warming due to greenhouse effect. 

Extended Data Fig. 5 | ENSO thermal damping in the initial 100 years after the 

butterfly effect. Shown are from 40 butterfly effect experiments of CESM-LE. a, b, 

Relationship between monthly E-index and monthly net heat flux over the eastern Pacific (EP, 

5°S-5°N, 150°W-90°W), and between monthly C-index and monthly central Pacific (CP, 

5°S-5°N, 160°E-90°W) quadratically detrended net heat flux into ocean (W m-2) for the 

initial 100 years (1920-2019). Thermal damping takes heat out of the ocean during El Niño 

and puts heat into the ocean during La Niña, but because El Niño is greater in amplitude, 

after several ENSO events, net heat is taken out of the ocean. c, Inter-experiment relationship 

showing that greater initial ENSO variability, hence a greater amount of cumulative ocean 

heat loss (at equator 105oW, indicated by black ‘+’ in e, positive out of ocean) is generated. 

Raw monthly net heat flux fields referenced to the 70-year (1850-1919) common monthly 

climatology prior to butterfly effect is constructed first before accumulation. The cumulative 

oceanic heat loss can be surrogated by heat flux variability, as seen in d, showing a greater 

cumulative heat loss is associated with greater heat flux variability. The blue stars and orange 

diamonds in c and d represent the 10 experiments with the weakest and strongest initial E-

index variability, respectively. Correlation and p-value of a linear fit (red solid line) are 

shown. e, Inter-experiment regression of 40 cumulative heat flux fields onto 40 values of E-

index variability, both over the initial 100 years (1920-2019), showing an ENSO pattern of 

cumulative heat flux. In experiments in which the butterfly effect leads to greater initial 

ENSO variability, a greater cumulative ocean heat loss is generated along the equator. 
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Statistically significance above the 90% and the 95% confidence level based on a two-tailed 

Student’s t-test is indicated as black stippling and the green solid contour, respectively. 

Extended Data Fig. 6 | Difference between two groups of experiments with strong and 

weak initial E-index variability. Shown are from 40 butterfly effect experiments of CESM-

LE. The difference indicates the impact due to different ENSO variability between the two 

groups. a, SST (oC) and wind stress (N m-2) difference between the 10 experiments with the 

strongest E-index variability in the initial 50-year period (1920-1969) and the 10 experiments 

with the weakest E-index variability for the same period (See Main Fig. 1a, orange diamonds 

and blue stars, respectively). b, Same as in a but for the upper 150m ocean temperature (oC). 

Stippling indicates where the difference between the two ensembles is significant above the 

90% confidence level, based on a two-tailed Student’s t-test and the green solid contour 

represents the 95% confidence level. 

Extended Data Fig. 7 | Selection of CMIP5 and CMIP6 models. Shown are 27 models, 

that is, 18 out of 34 CMIP5 models and 9 out of 15 CMIP6 models that produce both 

dynamic nonlinear coefficient αD <-0.155, that is, greater than half of the observed 

amplitude17 and these also produce a thermodynamic nonlinear coefficient αT <0 with all but 

one simulating half of the observed based. In general, a greater αT is associated with a greater 

αD.with a correlation coefficient of 0.47 using all models. Selected models are marked by 

symbols filling in different colors, while non-selected models are indicated with black and 

gray without filling. Each ensemble member and the multimember ensemble mean for 

CESM-LE are shown in filled blue and red circle, respectively. 

Extended Data Fig. 8 | ENSO properties in CMIP5 and CMIP6 models. a, b, Inter-model 

relationship of E-index variability with strong ENSO frequency and with eastern Pacific 

(5°S-5°N, 150°W-90°W) heat flux variability, receptively, for the initial 50-year period 

(1900-1949). c, d, The same as a, b, respectively, but for the last 50-year period (2050-2099). 

Models with a higher E-index variability systematically generate a higher frequency of strong 

ENSO events and a stronger heat flux variability. Shown are 27 models, i.e., 18 out of 34 

CMIP5 models and 9 out of 15 CMIP6 models that produce both a dynamic nonlinear 

coefficient αD< -0.155, i.e. greater than half of the observed amplitude17 and a 

thermodynamic nonlinear coefficient αT <0. Strong ENSO frequency in a, c is defined as the 

total number per 50 years of strong El Niño events (E-index > 1.5 s.d.) plus the total number 

of strong La Niña events (C-index < -1.5 s.d.) in ENSO peak season of December-February. 

Correlation and p-value of a linear fit (red solid line) are shown. In all scatter plots, the 

relationship is statistically significant above the 99% confidence level. 

Extended Data Fig. 9 | Evolution of ENSO variability in CMIP5 and CMIP6 models. a, 

Inter-model relationship between the last (2050-2099) and initial (1900-1949) 50-year period 

in E-index variability, showing an inverse relationship statistically significant above the 99% 
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confidence level, that is, models that generate a greater variability in the initial period 

systematically produce a smaller future variability. Shown are 27 models, that is, 18 out of 34 

CMIP5 models and 9 out of 15 CMIP6 models that produce both a dynamic nonlinear 

coefficient αD <-0.155 (greater than half of the observed amplitude17) and a thermodynamic 

nonlinear coefficient αT <0. b, Evolution of E-index variability, measured by a 50-year 

running window, moving forward every year from 1900 and recorded at the initial year, for 

10 models with strong initial E-index variability (red box in a) and 10 models with weak 

initial E-index variability (blue box in a). Solid red  (blue) lines and red  (blue) shadings 

indicate multi-model average and inter-model spread (one standard deviation value), 

respectively, of the 10 models with strong  (weak) initial E-index variability. ENSO 

variability in models with weaker initial variability exhibits a faster increase in response to 

greenhouse warming during the ensuing periods, with a final amplitude that exceeds that in 

models with stronger initial ENSO variability. Different running window lengths (for 

example, 40-year, 60-year) and different sample sizes of model groups for averaging (for 

instance 7 or 13 models with largest initial E-index variability versus 7 or 13 models with 

smallest initial E-index variability, respectively) produce qualitatively similar behavior.  

Extended Data Fig. 10 | Initial ENSO variability and its future change in all available 

runs of CMIP5 and CMIP6 models.  Shown are the 27 selected models, that is, 18 out of 34 

CMIP5 models and 9 out of 15 CMIP6 models that produce both a dynamic nonlinear 

coefficient αD <-0.155 (greater than half of the observed amplitude17) and a thermodynamic 

nonlinear coefficient αT <0. a, Inter-model relationship between initial 50-year (1900-1949) 

E-index variability and its future change (2050-2099 minus 1900-1949) scaled by the 

corresponding global-mean SST warming in each model. b, As in a, but for C-index. Run 

numbers are indicated next to the model names (for example, r1, r2 and so on).  
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