Application of Deep Learning for Classification of Intertidal Eelgrass from Drone-Acquired Imagery
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Application of Deep Learning for Classification of Intertidal Eelgrass from Drone-Acquired Imagery

Filetype[PDF-4.89 MB]



Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Shallow estuarine habitats are globally undergoing rapid changes due to climate change and anthropogenic influences, resulting in spatiotemporal shifts in distribution and habitat extent. Yet, scientists and managers do not always have rapidly available data to track habitat changes in real-time. In this study, we apply a novel and a state-of-the-art image segmentation machine learning technique (DeepLab) to two years of high-resolution drone-based imagery of a marine flowering plant species (eelgrass, a temperate seagrass). We apply the model to eelgrass (Zostera marina) meadows in the Morro Bay estuary, California, an estuary that has undergone large eelgrass declines and the subsequent recovery of seagrass meadows in the last decade. The model accurately classified eelgrass across a range of conditions and sizes from meadow-scale to small-scale patches that are less than a meter in size. The model recall, precision, and F1 scores were 0.954, 0.723, and 0.809, respectively, when using human-annotated training data and random assessment points. All our accuracy values were comparable to or demonstrated greater accuracy than other models for similar seagrass systems. This study demonstrates the potential for advanced image segmentation machine learning methods to accurately support the active monitoring and analysis of seagrass dynamics from drone-based images, a framework likely applicable to similar marine ecosystems globally, and one that can provide quantitative and accurate data for long-term management strategies that seek to protect these vital ecosystems.
  • Source:
    Remote Sensing, 15(9), 2321
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1