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Abstract: Shallow estuarine habitats are globally undergoing rapid changes due to climate change
and anthropogenic influences, resulting in spatiotemporal shifts in distribution and habitat extent.
Yet, scientists and managers do not always have rapidly available data to track habitat changes in
real-time. In this study, we apply a novel and a state-of-the-art image segmentation machine learning
technique (DeepLab) to two years of high-resolution drone-based imagery of a marine flowering plant
species (eelgrass, a temperate seagrass). We apply the model to eelgrass (Zostera marina) meadows
in the Morro Bay estuary, California, an estuary that has undergone large eelgrass declines and
the subsequent recovery of seagrass meadows in the last decade. The model accurately classified
eelgrass across a range of conditions and sizes from meadow-scale to small-scale patches that are
less than a meter in size. The model recall, precision, and F1 scores were 0.954, 0.723, and 0.809,
respectively, when using human-annotated training data and random assessment points. All our
accuracy values were comparable to or demonstrated greater accuracy than other models for similar
seagrass systems. This study demonstrates the potential for advanced image segmentation machine
learning methods to accurately support the active monitoring and analysis of seagrass dynamics
from drone-based images, a framework likely applicable to similar marine ecosystems globally, and
one that can provide quantitative and accurate data for long-term management strategies that seek to
protect these vital ecosystems.

Keywords: shallow estuarine habitat; eelgrass; drones; machine learning; coastal dynamics; climate;
Morro Bay

1. Introduction

Marine habitats are threatened globally [1] and there is a need to monitor changes
and determine appropriate management actions at increasingly rapid timescales [2,3]. One
critical marine ecotone is the estuary habitat. Estuaries are critical interfaces between fresh-
water and marine environments. Although among the world’s most productive ecosystems,
estuaries are under an increasing threat from the confluence of climate change, urban devel-
opment, and pollution [4]. Moreover, estuaries are particularly responsive to environmental
changes because estuary species are living near the edges of their tolerances [5,6]. Thus,
estuaries may serve as sensitive indicators of global climate change [7].

Seagrass ecosystems are one of the most important habitats in estuaries, while also
being some of the most threatened habitats, with documented global declines since the
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early 1900s [8–11]. Eelgrass (Zostera marina, a seagrass species of temperate waters) is a
habitat-forming marine angiosperm native to nearshore ecosystems across global temper-
ate systems [8]. They provide ecological services, including pathogen remediation [12],
carbon sequestration, ocean acidification amelioration, and sediment stabilization, while
supporting species with cultural, economic (e.g., global commercial harvested species)
and ecological importance [2,4,13–17]. Habitat change can occur due to either large-scale
environmental or physical ecosystem changes [18] or due to small-scale environmental
variability [19]. There is a growing need to monitor and assess estuarine seagrass dynamics
over time to better understand their role in altering marine ecosystem health and resilience.

Several papers have described small-scale estuary and eelgrass spatial habitat dynam-
ics on the Pacific Coast, including archival studies and field investigations [20,21], coastal
shoreline surveys [22], and satellite-based methods [23]. Satellite-based methods are also
sensitive to image-degrading atmospheric effects and weather (e.g., fog and cloud cover in
coastal environments), although they can be a low-cost method for large-scale substrate
mapping [21–23]. Alternatively, unmanned aircraft systems (UAS; hereafter, drones) can
provide high-resolution photographs and geospatial data for wildlife surveys [24,25], the
identification of individual flora or fauna [26], and photogrammetry [27]. Drone-based
data acquisition for ecological applications has increased rapidly [28] and thus so has the
need to rapidly analyze existing imagery to facilitate proactive management.

Drone-based imagery can be collected directly by individual researchers with mil-
limeter to centimeter scale spatial resolution [29,30]. Furthermore, the timing of surveys
and spatial coverage can be tailored for specific questions, unlike satellite-based products,
allowing for efficient and on-demand sampling. This flexibility is critical for detecting
small-scale environmental change and identifying causal processes. Drones have now been
used to assess wave run-up on shorelines [31], ocean temperature [23], ocean aerosols [32],
algae biomass [33], and coastal geomorphology [34], and sensors have been developed for
the high-resolution mapping of parameters such as sea surface salinity [35], the health of
coral reefs [36] and seagrass beds [37], shoreline habitat mapping and coastal erosion stud-
ies [34], and in assessing the health and abundance of marine vertebrates [38,39]. Drones
can detect individual seagrass patches on the order of millimeter to centimeter scale spatial
resolution, while typical remote sensing products are limited to more meadow-scale on the
order of tens to hundreds of meters.

The availability of small, low-cost, easy-to-fly consumer drones has the potential
to transform how natural resource managers work to assess and conserve seagrass and
shallow marine habitats, but only if there are quick and accurate habitat classification
algorithms and training datasets that are widely available. Currently, and historically in
most cases, the data collected from drone sampling regimes are assessed manually. This
typically requires extensive hours of manual labor by trained scientists scanning photos
and identifying organisms and may sometimes result in observer bias in counts [28]. To
address this analytical bottleneck, machine learning techniques have increasingly been
paired with drone imagery over the last decade to assess geospatial imagery and habitat
extent and are growing in popularity for habitat classification [40–47]. Machine learning
methods allow for the rapid identification and documentation of estuary spatial habitat
dynamics and can support increasing data robustness and data-driven management actions
to conserve and protect these critical habitats.

There are a broad range of studies that have applied machine learning techniques to
coastal, estuary, and other marine habitats, including ensemble methods, random forest
machine learning algorithms, support vector machine algorithms, and object-based image
classification techniques [44,48–52]. However, for drone data specifically, prior research
has typically focused on statistical methods such as Z-score normalizations, maximum
likelihood classifiers [53] or random forest classifiers [54]. Given the high-resolution
imagery captured from drones, image segmentation techniques may prove more accurate
compared to traditional image classification techniques since they provide exact outlines
of objects in a scene at the level of pixel-by-pixel resolution. Here, we apply an image
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segmentation technique (DeepLab), previously applied in terrestrial ecosystems [55], to
assess dynamics of change in eelgrass habitat.

Although previous work has studied automatic or semi-automatic segmentation and
classification of eelgrass (Z. marina) from drone-based data [16–18,32], this study is the first
to our knowledge to evaluate the application of deep learning methods for this task. This
is also the first study to our knowledge to evaluate automatic eelgrass delineation in the
California Current at a high-resolution scale on the order of cm. We study eelgrass spatial
habitat dynamics in the Morro Bay Estuary of California, an estuary that has undergone
large declines and the subsequent recovery of eelgrass over the past decade [17,33,34].
Furthermore, this work is unique in that we evaluate the potential of longitudinal analysis
for the study of eelgrass spatial dynamics by training the classifier on data from one year
and evaluating its ability to identify eelgrass in data from the next year.

2. Materials and Methods
2.1. Site Description

Morro Bay is a relatively small (~930 hectares) semi-enclosed shallow estuarine ecosys-
tem, located south of Monterey Bay and north of Point Conception State Marine Reserve,
along an underexamined stretch of the California coast [56]. Morro Bay not only supports
a wide variety of bird, fish, mammalian, and invertebrate communities [57], but is also a
popular tourist destination, home to a fishing port for local fisheries [47], and supports two
commercial shellfish aquaculture operations. The Morro Bay estuary is approximately 3 km
wide and 8 km long and has a main channel that is lined by large expanses of intertidal
flats, once dominated by the major biogenic habitat of eelgrasses. The spatial distribution of
eelgrass beds throughout Morro Bay has declined since 2007, from 139.2 ha in 2007 to less
than 6 ha in 2017, although there are signs of a recovery in recent years [17]. Historically,
multispectral imagery obtained from aerial flyovers was used to map eelgrass habitat
distributions in Morro Bay; however, since this method is cost-prohibitive, surveys were
only conducted intermittently, and as a result, major periods of transition and change were
sometimes missed (see, e.g., [17]).

2.2. Data Collection

Eelgrass coverage in Morro Bay was mapped using a DJI Phantom 4 Pro drone
equipped with a high-resolution camera (20 mp). The drone was flown in November
and December of both 2018 and 2019, during 4–5 non-consecutive days of extreme low tides
(with flight times of roughly 1 h per day due to low tide limitations) when the intertidal
flats and eelgrass beds were exposed, typically at tides lower than approximately −0.3 m
relative to the mean lower low water (MLLW). We used the first year of data in 2018 to
train the machine learning model and applied it to the second year of data in 2019 to test
the model accuracy (Figure 1).

The drone was flown at low altitude (122 m), which results in fine-resolution imagery
(~3.35 cm/pixel), providing the ability to resolve fine-scale features and individual eelgrass
patches. Following the generation of georectified (map-based registration of an image),
estuary-wide orthomosaics (~5000 images per year), the manual classification of the eelgrass
habitat during both years of data was performed by a team of geographic information
systems (GIS) specialists. This included varying levels of iterative validation checks,
including the ground-truthing of areas that had multiple species or limiting weather factors
(e.g., low light). A grid was used to ensure all areas of the bay were considered. The
threshold for the smallest bed size to digitize was set at a 0.9 m length scale based on image
resolution. Each GIS specialist manually digitized polygons, delineating each patch of
eelgrass they could identify, and all images were spot-checked by another person. For each
year, this digitization process took about 1000 h. The total eelgrass acreage was 6.6 ha and
14.9 ha in 2018 and 2019, respectively [17].
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Figure 1. (Left) Human-annotated images of Morro Bay eelgrass habitats from (a) 2018 and (b) 2019. 
(Right) The three rows on the right highlight three regions of the estuary in 2019 at varying levels 
of zoom, as indicated by each inset. (1) Dense bed toward the mouth of estuary that is above water, 
appearing a light gray-green color; (2) partially submerged beds of varying size mid-estuary that 
are darker green and have some red-brown coloration and gleam off blades of eelgrass; (3) smaller, 
younger beds that are not submerged and appear lighter green in the images. 
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We used an object-oriented machine learning approach called semantic image seg-
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input to a semantic segmentation model is the raster dataset. The output of a semantic 
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Figure 1. (Left) Human-annotated images of Morro Bay eelgrass habitats from (a) 2018 and (b) 2019.
(Right) The three rows on the right highlight three regions of the estuary in 2019 at varying levels
of zoom, as indicated by each inset. (1) Dense bed toward the mouth of estuary that is above water,
appearing a light gray-green color; (2) partially submerged beds of varying size mid-estuary that
are darker green and have some red-brown coloration and gleam off blades of eelgrass; (3) smaller,
younger beds that are not submerged and appear lighter green in the images.

2.3. Machine Learning Model
2.3.1. Image Segmentation

We used an object-oriented machine learning approach called semantic image seg-
mentation (semantic segmentation hereafter). Semantic segmentation is an image-based
machine learning neural network technique that delineates objects within an image. The
input to a semantic segmentation model is the raster dataset. The output of a semantic
segmentation model is a segmentation map of the input image, where each pixel value (one
for each band within a pixel, with values ranging from 0 to 255) is transformed into a class
label value (that is, 0, 1, 2, . . . , n). The machine learning algorithm behind semantic seg-
mentation is a convolutional neural network, an algorithm that allows the model to learn
the patterns and distinct characteristics of the labeled objects within a given dataset [58]. In
this study, we built a binary image segmentation model, where each pixel belonged to one
of two classes: an eelgrass or a non-eelgrass class.

2.3.2. Training Data Preparation

We used the 2018 raster dataset for model training and the 2019 raster dataset for
model testing. We exported the data from the human-annotated eelgrass polygons of the
2018 raster dataset. We set the chip size to 448 × 448 pixels and the stride value at 224 pixels,
which is equivalent to a 50% overlap between consecutive chips. With these settings, each
exported training chip contained a 448 × 448 input image clipped from the 2018 raster
dataset and a segmentation image that denoted the class value of each pixel of the input
image (e.g., eelgrass or non-eelgrass) (Figure 2a).
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Figure 2. Example training chips for the machine learning pipeline. Each training chip is a pair of
images where the left one is the input clipped from the 2018 raster dataset, and the right one is a
segmentation image for the input. (a) Chips capturing eelgrass are annotated with white pixels for
eelgrass class and black pixels for non-eelgrass class; (b) chips capturing other vegetation contain no
eelgrass class, annotated with all black pixels for non-eelgrass class.

Most of the training chips contained annotations of the eelgrass within the image,
hence, we added extra chips that had no annotations. To eliminate potential false positives,
we exported training chips containing other vegetation classes that were visually similar
to eelgrass (e.g., macroalgae such as Ulva spp. and Gracilaria spp.). Each of these training
chips was assigned with a non-eelgrass class value (Figure 2b).

2.3.3. Model Training

We trained a DeepLab v3 model [59] using the ArcGIS Learn Python module. We
evaluated model performance on two well-known backbone architectures for image classi-
fication, Resnet 50 and Resnet 101, classes of deep neural networks applied to analyzing
visual imagery [60]. We found that the Resnet 50 backbone architecture provided faster
training and inference times with comparable accuracy to Resnet 101. As a result, we used
Resnet 50 as the backbone architecture for the final model. We used a validation split of
20 percent of the training data, and we did not observe overfitting (Figures 3 and 4).
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With a batch size of 20, we trained the model on 50 epochs and saved the best model
obtained during training. We used ArcGIS’s Learn built-in function to determine the
optimal learning rate to train the model. ArcGIS Learn utilizes FastAI’s learning rate
finding algorithm [61]. The optimal learning rate (the step size in gradient descent) found
by this algorithm with the Adam optimizer was 3.6 × 10−3 at the beginning, decaying
linearly after each epoch to 3.6 × 10−4 when training was completed. Initially, we utilized
a higher learning rate so that the model would learn patterns in the training data more
rapidly. As the model approached the optimum learning point, where the lowest loss value
in the validation set occurred, we used a lower learning rate. This ensured that the model
oscillated around this optimum point, so as to not move farther away from the optimum
point during the refinement process [62].

2.3.4. Model Testing

The DeepLab model was evaluated on the 2019 raster dataset and inference was run
to obtain a class map. Over 1 million accuracy assessment points were randomly generated
throughout the domain for the purpose of comparing class values from the map against
the human-annotated and ground-truthed polygon shapefile for each point. The results
of these comparisons were used to compute a confusion matrix for model performance
evaluation. We also computed the harmonic mean between precision and recall obtaining
an F1 score, a performance metric that ranges between 0 and 1 for model performance [63].

3. Results

The model was able to accurately identify and annotate eelgrass throughout the
estuary, recognizing variability in color, texture, and shape/size (Figure 5). In several
places, it was more precise than human annotators. The model more closely traced the
outline of beds without cutting off edges based on later visual inspection of images. This
was true for multiple eelgrass patches, including larger beds (Figures 1 and 5a) and smaller
patchy ones (Figures 2b and 5a).

For the accuracy assessment points, there were many true positives (7286) and a
low number of false negatives (334). The recall value was relatively high at 0.954. Our
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qualitative assessment demonstrated that often, false positives were the result of the model
classifying mixed macroalgae or terrestrial vegetation as eelgrass. The remaining false
positives were the result of shadowed water being classified as eelgrass. The false negatives,
which represented 344 ground truth points, were primarily in regions where eelgrass beds
were partially submerged, and human annotators assumed continuous beds (Figure 6b).
There were a few larger patches and thousands of smaller patches of eelgrass which were
detected by the model, but completely missed by human annotators. For the assessment
points, there was a moderate number of false positives (3088) that resulted in a lower
precision value of 0.723. Thus, among the total pixels that the model classified as eelgrass,
approximately 72.3 percent of them were truly eelgrass. The F1 score for the model data
was 0.809.
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Figure 5. Model success cases. Human eelgrass annotations compared to machine-annotated clas-
sifications in the three areas of the estuary shown in Figure 1. Column (a,b) show the same area
of the estuary with human and model annotations, respectively, while column (c) shows the two
annotations overlapped and zoomed in to see differences in annotations more clearly. (1) The ma-
chine annotation can capture larger beds and accurately capture the perimeter on par with human
annotations. (2) Smaller, patchy beds that the machine annotations more precisely outline beds than
the human annotations. (3) The model can pick up on smaller beds that are missed or deemed too
small to annotate in human annotations.

To verify the effectiveness of our model, we compared the performance of our DeepLab
model to a baseline (Table 1). Our baseline model was U-Net [64], an older deep learning
semantic segmentation model with simpler structures and fewer parameters. Our DeepLab
model has a slightly lower precision (0.723 versus 0.803), a higher recall (0.954 versus 0.652)
and higher F1 score (0.809 versus 0.720). With a higher F1 score overall, our model is more
effective at segmenting eelgrass patches.

Table 1. Confusion matrix for Resnet50 DeepLab v3 model on the 2019 raster dataset.

Ground Truth

Not Eelgrass Eelgrass Total

Classified

Not eelgrass 989,282 344 989,626

Eelgrass 3088 7286 10,374

Total 992,370 7630 1,000,000



Remote Sens. 2023, 15, 2321 8 of 13

Remote Sens. 2023, 15, × FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Model success cases. Human eelgrass annotations compared to machine-annotated classi-
fications in the three areas of the estuary shown in Figure 1. Column (a,b) show the same area of the 
estuary with human and model annotations, respectively, while column (c) shows the two annota-
tions overlapped and zoomed in to see differences in annotations more clearly. (1) The machine 
annotation can capture larger beds and accurately capture the perimeter on par with human anno-
tations. (2) Smaller, patchy beds that the machine annotations more precisely outline beds than the 
human annotations. (3) The model can pick up on smaller beds that are missed or deemed too small 
to annotate in human annotations. 

 
Figure 6. Similar to Figure 5, but with regard to model failure cases. (1) False positives: A bed of 
mixed macroalgae that the model annotates as eelgrass. (2) False positives: A bed primarily made 
up of Ulva spp., with some eelgrass that the model annotates as being entirely eelgrass. (3) False 
negatives: a partially submerged bed that was inferred to be all eelgrass by annotator. The model 
annotated the parts of the bed that are less submerged. 

Figure 6. Similar to Figure 5, but with regard to model failure cases. (1) False positives: A bed of
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up of Ulva spp., with some eelgrass that the model annotates as being entirely eelgrass. (3) False
negatives: a partially submerged bed that was inferred to be all eelgrass by annotator. The model
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4. Discussion

Understanding, monitoring, and modeling small-scale marine habitat dynamics re-
quire accurate and high-resolution spatial information. In this study, we applied a su-
pervised and a state-of-the-art deep learning model for semantic image segmentation to
estuary-wide drone imagery and demonstrated high accuracy for the classification of eel-
grass patches relative to human-annotated images. This combined drone-machine learning
method has potential to improve the time, cost, and resolution of previous field- and aerial
flyover-based methods in Morro Bay. We demonstrate high accuracy for the classification
of eelgrass relative to human-annotated images. The model recall, precision, and F1 scores
were 0.954, 0.723, and 0.809, respectively, when using human-annotated training data and
random assessment points, and our results were either comparable to or demonstrated
greater accuracy than other models for similar systems [65,66].

In the existing literature on the drone-based mapping of seagrass habitats, other pixel-
based machine learning techniques achieved anywhere between 51 percent to 82 percent
model F1 score accuracies [67–74]. Studies with more than 90 percent accuracy usually com-
bined two or more machine learning techniques [75], used a combination of statistics and
machine learning techniques [49], or used underwater imagery or ROV data to gather even
more fine-resolution data of eelgrass patches and sometimes individual eelgrass blades [76].

A limitation in these types of studies on marine estuaries is the variation in seagrass
patch extent, density, bed size, color, and lighting in the imagery. Capturing all the variation
that would be seen between different years of drone flights is difficult with a single year
of training data and will be the subject of future work. A larger concern is the amount of
another habitat present (e.g., macroalgae). In this system, macroalgae (Ulva spp., Chaeto-
morpha, and Gracilaria) can appear similar in the drone imagery, and often coexist with
eelgrass. Often, the macroalgae will mix with eelgrass or grow in layers on top of beds
of eelgrass. This results in more discrepancies in training data, as it is difficult to set a
threshold for how much of a bed must be eelgrass to be classified as so, and whether a bed
that is covered in, for example Ulva spp., should be annotated or left out. It also decreases
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the performance of the machine learning model, as shown by the large source of false
positives from macroalgae (Figure 6). To improve the model accuracy, a multi-class image
classification model with a class label for each type of vegetation could be developed. This
would require additional training data for each vegetation class and is the subject of future
work. Furthermore, the vertical range of the intertidal habitat requires extended periods
of low tides where most of the eelgrass is exposed during daylight hours (~4–5 h of tides
below −0.3 m MLLW in this site). This time constraint, which will vary depending on the
vertical range of the intertidal target species, may limit the applicability of drone-based
methods in much larger systems and more regional analyses, at least with current tech-
nologies. In these situations, a hybrid method that utilizes satellite-based products for
coarser-scale patterns and drone-based products for finer-scaler patterns, or where higher
accuracy is needed, may prove effective and is the subject of future work.

Our work exhibits the potential for advanced machine learning methods to accurately
support the real-time monitoring and analysis of seagrass dynamics from drone-based
images. This methodology can be applicable to similar marine ecosystems globally. Further-
more, it can provide quantitative and accurate data for long-term management strategies
that seek to protect these vital ecosystems. Our results demonstrate the potential for image
segmentation algorithms to accurately track eelgrass habitat change over seasonal and
annual time scales in marine ecosystems globally and is the first of its kind for the Pacific
Northwest and California Current geographic region.

Coastal ecosystems face continuous shifts through habitat expansion, contractions, and
redistributions, and this applies to seagrass ecosystems as well [77–80]. While many habi-
tats continuously shift, quantitative information uncovering the details of those changes is
more critical than ever as habitats face a multitude of stressors, including climate change
and anthropogenic disturbance [8,71,81–83]. Studies also show that the spatial dynamics of
change in seagrass varies among landscapes and sites, with sites that face more frequent
natural and human stressors supporting more dynamic and volatile eelgrass distribu-
tions [21]. Changes in biogenic habitat, such as seagrass, can cause associated changes in
physiochemical conditions that shape seagrass benthic macrofauna communities, such as
benthic respiration and solute fluxes, which can in turn affect benthic ecological diversity
and sediment biogeochemistry [84,85]. Hand classification of seagrass over large areas is
time consuming and unlikely to result in a rapid knowledge of change that can facilitate
proactive management. Repeated, accessible, and inexpensive techniques will be required
to monitor eelgrass distribution dynamics against the backdrop of estuarine climate change,
including increasing heatwaves [86,87], sea level rise [88], and harmful algal blooms [89].

This work helps provide methods to guide short-term interventions to conserve eel-
grass habitats and allow long-term observation of trends in estuary status. The information
generated can be shared with stakeholders in the estuarine environment, such as shellfish
and algae farmers, fishermen, and birders, as a way to engage with broader audiences in
decision-making and conservation planning. Further research that couples drone observa-
tions and machine learning with the field evaluation of physical and biological stressors
could help elucidate the differential impacts of natural and anthropogenic influences on
eelgrass habitats.

As the drone-based measurements continue to expand, the model developed could
be tested in other similar global intertidal eelgrass systems and could potentially lead
to repeated systematic surveys across the entire coastlines for understanding eelgrass
dynamics and the consequences of change [21]. In the future, if the model framework
is refined and robust additional classes are added, along with additional computational
power, this model can scale to include other seagrass species globally. The model framework
developed here can be used to document small-scale changes rapidly and inexpensively in
dynamic eelgrass systems, ultimately providing quantitative and accurate data needed for
long-term management strategies that seek to protect these vital ecosystems.
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