Wind Wave Growth and Dissipation in a Narrow, Fetch-Limited Estuary: Long Island Sound
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Wind Wave Growth and Dissipation in a Narrow, Fetch-Limited Estuary: Long Island Sound

Filetype[PDF-5.76 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Marine Science and Engineering
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The geometry of the Long Island Sound (LIS) renders the wave field fetch-limited and leads to marked differences between western and eastern areas. The mechanisms that contribute to the formation and dissipation of waves in the LIS are not well understood. We evaluated the ability of the wave module of a wave-coupled hydrodynamic model to simulate different wind–wave scenarios. We were unable to capture wave statistics correctly using existing meteorological model results for wind forcing due to the low resolution of the models and their inability to resolve the LIS coastline sufficiently. To solve this problem, we modified the wind fields using in situ wind observations from buoys. We optimized both the Komen and Jansen parameterizations for the LIS to better present the peak winds during storms. Waves in the LIS develop more quickly than simple theory predicts due to quadruplet nonlinear wave–wave interaction effects. Removing quadruplet nonlinear wave–wave interaction increases the time to full saturation by 50%. The spatial distribution of wave energy density input reveals the complex interaction between wind and waves in the LIS, with the area of greatest exposure receiving higher wave energy density. The interaction of nonlinear wave–wave interaction and whitecapping dissipation defines the shape of the directional spectrum along the LIS. Dissipation due to whitecapping and shoaling are the main parameters modulating a fully developed wave field.
  • Source:
    Journal of Marine Science and Engineering, 11(8), 1579
  • DOI:
  • ISSN:
    2077-1312
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.1