Quantifying the linkages between California sea lion (Zalophus californianus) strandings and particulate domoic acid concentrations at piers across Southern California
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Quantifying the linkages between California sea lion (Zalophus californianus) strandings and particulate domoic acid concentrations at piers across Southern California

Filetype[PDF-7.23 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Frontiers in Marine Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Domoic acid-producing blooms of the diatom genus Pseudo-nitzschia are pervasive in coastal environments globally. Domoic acid, a neurotoxin, accumulates via trophic transfer into marine food webs and is often associated with mass marine mammal mortality and stranding events. In Southern California, California sea lions (Zalophus californianus) are an indicator species for food web impacts of domoic acid because they are abundant secondary consumers, sensitive to domoic acid intoxication, and are actively monitored by stranding networks. However, domoic acid exposure may occur a distance from where a sea lion ultimately strands. This spatiotemporal variation complicates coupling domoic acid observations in water to strandings. Therefore, we sought to quantify whether monitoring data from four pier sites across the region, covering nearly 700 km of coastline from 2015-2019, could be used to predict adult and subadult sea lion strandings along the 68 km Orange County coastline surveyed by the Pacific Marine Mammal Center. We found that increased sea lion strandings were often observed just prior to an increase in particulate domoic acid at the piers, confirming that clusters of subadult and adult sea lion strandings with clinical signs of domoic acid intoxication serve as indicators of bloom events. In addition, domoic acid concentrations at Stearns Wharf, nearly 200 km from stranding locations, best predicted increased total sea lion strandings, and strandings of sea lions with domoic acid intoxication symptoms. Particulate domoic acid concentrations greater than 0.05 μg/L at Stearns Wharf were linked to stranding probabilities in Orange County ranging from 2.2% to 55% per week, and concentrations of 0.25 μg/L resulted in weekly stranding probabilities ranging from 16% to 81% depending on the stranding scenario modeled.
  • Source:
    Frontiers in Marine Science, 10
  • DOI:
  • ISSN:
    2296-7745
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1