The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves
-
2016
-
-
Source: Marine Ecology Progress Series, 558, 1-14
Details:
-
Journal Title:Marine Ecology Progress Series
-
Personal Author:
-
NOAA Program & Office:
-
Description:This study assessed the effects of constant and diurnally fluctuating acidification and hypoxia on the survival, growth, and development of larval stages of 3 bivalves indigenous to the east coast of North America: bay scallops Argopecten irradians, hard clams Mercenaria mercenaria, and eastern oysters Crassostrea virginica. Bivalves were exposed to ideal (pH = ~7.9, dissolved oxygen [DO] = ~7 mg l-1), acidified (pH = ~7.2, DO = ~7 mg l-1), hypoxic (pH = ~7.9, DO = ~2 mg l-1), and acidified and hypoxic (pH = ~7.2, DO = ~2 mg l-1) conditions, as well as treatments that fluctuated between ideal conditions by day and acidified, hypoxic, or acidified and hypoxic conditions by night. Continuously acidified conditions reduced survival of larvae of all 3 species, slowed growth of larval bay scallops and eastern oysters, and delayed the development of bay scallop larvae. Continuously hypoxic conditions reduced the survival, growth, and development of larval bay scallops and slowed the development of larval hard clams. Simultaneous exposure to continuously low pH and DO yielded more negative effects than each factor independently. Diurnal exposure to low pH and/or low DO rarely altered, and never fully mitigated, the negative effects of hypoxia and/or acidification despite significantly higher mean pH and DO levels. This suggests that pH and DO fluctuations were too intense, and/or the durations of normoxic and normcapnic conditions were not long enough for bivalve larvae to overcome the physiological stress of hypoxia and acidification. Therefore, the diurnal fluctuations of pH and DO in this study did not provide a temporal refuge from hypoxia and acidification for North Atlantic bivalve larvae, suggesting that such fluctuations in an ecosystem setting can be a significant threat to these larvae.
-
Source:Marine Ecology Progress Series, 558, 1-14
-
DOI:
-
ISSN:0171-8630;1616-1599;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: