Acidification increases sensitivity to hypoxia in important forage fishes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Acidification increases sensitivity to hypoxia in important forage fishes

Filetype[PDF-384.22 KB]



Details:

  • Journal Title:
    Marine Ecology Progress Series
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Hypoxia (low dissolved oxygen [DO]) and CO2-induced acidification are important aquatic stressors that are exacerbated by anthropogenic nutrient inputs and are expected to increase in severity with increasing atmospheric CO2 and higher global temperatures. Understanding how species respond to changes in DO and pH is critical to predicting how climate change will affect estuarine ecosystems, including the extreme shallow margins of these systems, where factors such as respiration, photosynthesis, and tides create daily fluctuations of DO and pH, and strong correlations between the 2 stressors. To determine how acidification affects the sensitivity to hypoxia of 2 important forage fishes, the silversides Menidia menidia and M. beryllina, we recorded opercula ventilation rates, aquatic surface respiration (ASR, where fish breathe in the oxygenated surface layer during hypoxic events), and mortality as we lowered either DO or both DO and pH simultaneously. Fish subjected to low DO and low pH in the laboratory performed ASR and died at higher DO concentrations than fish subjected only to hypoxia. Additionally, fish beat their opercula slower, which may have contributed to the differences in ASR and mortality that we saw. These results indicate acidification can increase mortality under hypoxia not only directly but also indirectly by increasing vulnerability to predation during increased use of ASR.
  • Source:
    Marine Ecology Progress Series, 549, 1-8
  • DOI:
  • ISSN:
    0171-8630;1616-1599;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1