A machine-learning approach to assign species to ‘unidentified’ entangled whales
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A machine-learning approach to assign species to ‘unidentified’ entangled whales

Filetype[PDF-542.06 KB]



Details:

  • Journal Title:
    Endangered Species Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Whale entanglements in US west coast fishing gear are largely represented by opportunistic sightings, and some reports lack species identifications due to rough seas, distance from whales, or a lack of cetacean identification expertise. Unidentified entanglements are often ignored in species risk assessments and thus, entanglement risk is underestimated. To address this negative bias, a species identification model was built from random forest (RF) classification trees using 199 identified entanglements (‘model data’). Humpback Megaptera novaeangliae and gray whales Eschrichtius robustus represented 92% of identified entanglements; the remaining 8% were minke whales Balaenoptera acutorostrata, fin whales B. physalus, blue whales B. musculus, and sperm whales Physeter macrocephalus. Predictor variables included year, gear type, location, season, sea surface temperature, water depth, and a multivariate El Niño index. Cross-validated species classifications were correct in 78% (155/199) of cases, significantly higher (p < 0.001, permutation test) than the 49% correct classification rate expected by chance. The RF model correctly classified 91% of humpback whale cases, 64% of gray whale cases, and 100% of sperm whale cases, but misclassified all minke, blue, and fin whale cases. The cross-validated RF classification-tree species model was used to classify 35 entanglements without species identifications (‘novel data’) and each case was assigned a probability of belonging to each of 6 model data species. This approach eliminates the negative bias associated with ignoring unidentified entanglements in species risk assessments. Applications to other wildlife studies where some detections are unidentified include fisheries bycatch, line-transect surveys, and large-whale vessel strikes.
  • Source:
    Endangered Species Research, 36, 89-98
  • DOI:
  • ISSN:
    1863-5407;1613-4796;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1