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INTRODUCTION

Entanglement of large whales in fishing gear and
marine debris is a source of anthropogenic mortality
and serious injury worldwide (Read et al. 2006, Brad-
ford et al. 2009, Cassoff et al. 2011, Meÿer et al. 2011,
Groom & Coughran 2012, Knowlton et al. 2012,
Moore 2014, van der Hoop et al. 2017). Documented
entanglements represent a minimum accounting of
impacts, because not all at-sea entanglements are
detected; either the whale is never seen or observers
fail to recognize that a whale is entangled. Negative
reporting biases are not limited to at-sea sightings.
Beach-stranded carcasses may go undetected along

remote coastlines or detected carcasses may lack vis-
ible evidence of entanglement due to decomposition
and thus, are not categorized as anthropogenic mor-
tality. Studies of recovery rates of cetacean carcasses
suggest that observed levels of anthropogenic mor-
tality and injury grossly underestimate actual levels
(Knowlton & Kraus 2001, Kraus et al. 2005, Williams
et al. 2011), even for extremely coastal species (Prado
et al. 2013, Wells et al. 2015, Carretta et al. 2016a).
Compounding the problem of incomplete detection is
that not all at-sea sightings of entanglements are
identified to species. Approximately 15% of US west
coast whale entanglement cases lack species iden -
tifications due to rough seas, observer distance to
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ABSTRACT: Whale entanglements in US west coast fishing gear are largely represented by
opportunistic sightings, and some reports lack species identifications due to rough seas, distance
from whales, or a lack of cetacean identification expertise. Unidentified entanglements are often
ignored in species risk assessments and thus, entanglement risk is underestimated. To address
this negative bias, a species identification model was built from random forest (RF) classification
trees using 199 identified entanglements (‘model data’). Humpback Megaptera novaeangliae and
gray whales Eschrichtius robustus represented 92% of identified entanglements; the remaining
8% were minke whales Balaenoptera acutorostrata, fin whales B. physalus, blue whales B. mus-
culus, and sperm whales Physeter macrocephalus. Predictor variables included year, gear type,
location, season, sea surface temperature, water depth, and a multivariate El Niño index. Cross-
validated species classifications were correct in 78% (155/199) of cases, significantly higher
(p < 0.001, permutation test) than the 49% correct classification rate expected by chance. The RF
model correctly classified 91% of humpback whale cases, 64% of gray whale cases, and 100% of
sperm whale cases, but misclassified all minke, blue, and fin whale cases. The cross-validated RF
classification-tree species model was used to classify 35 entanglements without species identifica-
tions (‘novel data’) and each case was assigned a probability of belonging to each of 6 model data
species. This approach eliminates the negative bias associated with ignoring unidentified entan-
glements in species risk assessments. Applications to other wildlife studies where some detections
are unidentified include fisheries bycatch, line-transect surveys, and large-whale vessel strikes.
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whales, or a lack of whale identifica-
tion expertise (Carretta et al. 2016b).
Quantitative methods to prorate
unidentified cases to species are lack-
ing in US marine mammal stock
assessments (Muto et al. 2016, War-
ing et al. 2016, Carretta et al. 2017);
thus the perceived entanglement risk
to some species is negatively biased
via omission of these cases. To better
account for entanglement risk, I
developed a species classification
model using random forest (RF) clas-
sification trees (Breiman 2001a,b,
Liaw & Wiener 2002), which are used
to classify unidentified sightings of
entangled whales to species.

METHODS

Data and model overview

Data on large-whale entangle-
ments are compiled by the National
Oceanic and Atmospheric Adminis-
tration (NOAA) through regional
marine mammal stranding networks
and disentanglement teams (Carretta
et al. 2016b). Reports and sightings
are verified with photos and/or video
when possible, but many records are
opportunistically reported; thus spe-
cies identification and the type of
fishing gear involved in entanglements are some-
times based on first-hand accounts. Only entangle-
ment records with photo/video documentation or
those received from re porting parties considered re -
liable (i.e. whale-watching companies, researchers,
members of the public who sufficiently describe the
entanglement and species involved) are included in
an entanglement database of known-species identi -
fications (here after referred to as ‘model data’).
Records lacking supporting species identification
evidence are categorized as ‘unidentified whale’
cases, hereafter referred to as ‘novel data’). All sight-
ing locations for model data and novel data entangle-
ments are shown in Fig. 1.

The RF machine-learning method, using classifica-
tion trees (Breiman 2001a,b, Liaw & Wiener 2002),
was used to evaluate if known species entanglements
(model data) could be accurately classified to species
via cross-validation. Once an accurate species ID clas-

sifier is created, it is used to classify unidentified
large-whale entanglements (novel data) to species.
Variables in the RF model included geographic loca-
tion, season, observation year, sea surface tempera-
ture (SST), water depth, an annual multivariate El
Niño index, and the type of fishing gear (Table 1). All
analyses were performed in the R programming envi-
ronment, version 3.2.3 (R Development Core Team
2017), using the R package randomForest, version
4.6-12 (Liaw & Wiener 2002). Known-species entan-
glements (n = 199) documented from 2007 to 2016
(Carretta et al. 2013, 2014, 2015, 2016b) served as
model data, from which a classification tree RF was
generated. For 35 entanglement cases lacking a spe-
cies identification (novel data), the variable character-
istics associated with these cases were used to classify
the species from constructed RF model trees. Details
on the RF model parameters and variables used to
construct it are summarized below and in Table 1.
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Fig. 1. Locations of (a−c) model data (identified species — a: gray whale, b:
humpback whale, c: sperm, minke, fin, and blue whales) and (d) novel data 

(unidentified) whale entanglements used in this analysis



Variables used in RF model

‘Interaction.Type’

Most documented large-whale entanglements along
the US west coast result from fishing gear interac-
tions that include pot/trap fisheries, gillnets, marine
debris, and unidentified fisheries (Carretta et al.
2016b). The ability to identify entanglement sources
depends upon the level of detail provided by report-
ing parties and opportunities for whale disentangle-
ment teams to approach the animals. Some entangle-
ment cases are linked to specific fisheries (i.e.
‘California Dungeness crab pot’), based on identifica-
tion of permit tag numbers on buoys associated with
the entangled line. Most cases can only be catego-
rized to a generic entanglement category such as
‘pot/trap fishery’, ‘gillnet’, or ‘unknown fishery inter-
action’ due to the opportunistic nature of reporting
and lack of recovered gear (Carretta et al. 2016b).
For the purposes of creating an entanglement species
model, I treated the variable Interaction.Type as a
categorical variable, with values limited to the ge -
neric categories ‘pot/trap fishery’, ‘net fishery’, and
‘unknown fishery interaction’.

Latitude (‘LAT’), longitude (‘LON’), 
and water depth (‘Depth’)

Specific latitude and longitude coordinates of en -
tangled whales were used when available, but such
locations were not always recorded because reports
and narratives reflect opportunistic sightings (e.g.
‘entangled whale seen halfway between Catalina
Island and mainland’). In those cases where entan-
glement narratives lacked latitude and longitude
coordinates, there was enough information (e.g. ‘3
miles [5 km] offshore of Point Loma, San Diego’) to
infer approximate locations and assign latitude/

longitude coordinates. Water depth (in meters) was
inter polated for latitude and longitude point data
using a geographic information system (GIS) with a
world ocean depth raster in ArcGIS software, version
10.4.1. Some depths were assigned a value of zero
because they involved entanglements extremely
close to shore or beach-stranded animals where GIS
water depth interpolations resulted in positive values
above sea level.

‘SST’

SST data were obtained for each entanglement re -
cord from archived data at NOAA’s National Data
Buoy Center (www.ndbc.noaa.gov/obs.shtml). SST
data were obtained from the nearest buoy location to
the entanglement and were based on the noon-time
temperature for that day.

‘Year’ and ‘MEI.mean’

The calendar year (‘Year’) of the observed entan-
glement was included as a categorical RF model vari-
able. In addition to Year, a multivariate El Niño index
variable was included to serve as a measure of the
broad-scale oceanographic conditions along the US
west coast in a given year. The ‘MEI.mean’ was cal-
culated for each calendar year as the annual mean of
12 bimonthly (2× a month) values obtained from
NOAA’s Earth System Research Laboratory (NOAA
2017).

Season (‘Day.of.Year’)

The seasonality of large-whale entanglements va -
ries by species; thus the sequential calendar day of
the year (Day.of.Year) was included as a candidate
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Variable name             Description                                                                                                                            Type

Interaction.Type         ‘Unidentified’, ‘Pot/trap fishery’, ‘Net fishery’                                                                   Categorical
Depth                           Water depth (m)                                                                                                                    Numeric
LAT                              Latitude in decimal degrees                                                                                                Numeric
LON                             Longitude in decimal degrees                                                                                             Numeric
Day.of.Year                 Consecutive day of calendar year, range: 1−365                                                               Integer
MEI.mean                    Multivariate El Niño index (mean of 12 bimonthly values for each calendar year)        Numeric
SST                               Sea surface temperature (°C)                                                                                               Numeric
Year                             Year of observation                                                                                                               Categorical

Table 1. Variables tested and used in the random forest large-whale entanglement species-identification model. Variables 
used in the final ID model are in bold



Endang Species Res 36: 89–98, 2018

variable. Day.of.Year was used instead of calendar
month, as it represents a finer measure of seasonality.
Simultaneous use of both month and Day.of.Year
variables is not recommended, as they are highly cor-
related, which can negatively impact classification
accuracy of RF models (Strobl et al. 2008).

RF model construction and cross-validation

The RF model consists of classification trees, since
the response is ‘Species’, a category to be classified.
Classification trees are recursive partitioning algo-
rithms. Random subsets of variables (default = √n
where n equals the number of variables) are selected
at each tree node and the variable that results in the
greatest variance reduction of the response is used to
split the data into successive daughter nodes. Such
variable splits continue until all observations in each
terminal node contain the same response variable
value or the terminal nodes each contain only a sin-
gle sample. Each classification tree is built from a
bootstrap sample of model data entanglements and
those model data omitted from construction of indi-
vidual RF trees are referred to as ‘out-of-bag’ (OOB)
data. Due to bootstrap sampling with replacement,
OOB data represent approximately 1/3 of all data
(Efron & Tibshirani 1997). Evaluation of the RF model
is based on classification accuracy, based on how
often cross-validated OOB model data are correctly
classified. The OOB data are introduced to con-
structed RF trees and species classifications are made
for all OOB data, based on variable characteristics of
the OOB data. The number of RF trees (n = 500 in this
study) is based on the approximate number of RF
trees required to return an asymptotic OOB error
rate. Cross-validated species classifications for OOB
data are summarized as a confusion matrix that
includes the number of correctly and incorrectly clas-
sified cases by species (see Table 2). Only species for
which there were at least 2 documented entangle-
ments were included in the analysis, due to the need
for model data cross-validation for each species.

I optimized the RF model by exhaustively search-
ing for the number and combination of variables that
maximized OOB correct classification rates for a RF
of 500 trees. This strategy was implemented by ran-
domly selecting subsets of all 8 candidate variables,
ranging from 2 (the minimum required) to all 8 vari-
ables, and recording the OOB correct classification
rate for each variable combination. The OOB correct
classification rates for the optimized RF model were
compared to correct classification rates expected by

chance when all model data cases are randomly
assigned a species in proportions equal to the ob -
served entanglements (i.e. permutation of the res -
ponse variable ‘Species’). This was done 1000 times
to generate a null distribution of correct classification
rates. The 1-tailed probability of observing the cor-
rect classification rate from OOB model data was cal-
culated as the observed fraction of null distribution
correct classification rates greater than or equal to
the observed correct classification rate (Fig. 2).

RF offers many tuning parameters for model evalu-
ation. The major ones are: maximum tree depth,
number of variables tested at each node, and number
of forest trees. These parameters were assessed dur-
ing model-building and the RF model that was used
in this study ultimately included trees grown to full
extent and the default number of variables consid-
ered for splitting at each node, or √n variables.

Variable importance for the optimized RF model
was assessed by permuting variables individually,
running a RF model with the permuted variable, and
comparing OOB correct classification rates between
the RF model run with and without permutation.
Negligible declines in classification accuracy with
permutation indicate that a given variable is no more
important than random noise in predicting species
identifications. Conversely, a large decline in classifi-
cation accuracy indicates that the permuted variable
is informative. Variable importance was quantified as
a ‘permutation cost’, which is equal to the number of
additional OOB entanglement cases misclassified
when a given variable was permuted.

Application of RF model to novel data

The RF model with the lowest OOB classification
error rate was applied to 35 novel data entanglement
cases lacking a species identification. For each novel
data case, a species assignment is generated, based
on the consensus predictions of all 500 RF trees (also
referred to as the plurality vote; Svetnik et al. 2003).
For each novel data case, the number of trees that
classify a given species varies from a minimum of
zero to the number of trees in the RF. The distribution
of species classifications over all 500 RF trees is anal-
ogous to a species probability assignment. For exam-
ple, a RF of 500 trees constructed from model data
consisting of 6 species, when applied to a novel data
case where the species is unknown, might yield the
following classifications: ‘Species.1’ = 300 trees; ‘Spe-
cies.2’ = 100 trees; ‘Species.3’ = 50 trees; ‘Species.4’ =
25 trees; ‘Species.5’ = 25 trees; and ‘Species.6’ = zero
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trees. The assigned species in this novel data exam-
ple is ‘Species.1’ (300/500 trees = plurality vote) and
the probability of assignment to Species 1−6 are 0.60,
0.20, 0.10, 0.05, 0.05, and 0, respectively.

RESULTS

The RF model that minimized model data OOB
error rates included 5 of 8 variables evaluated (Day.
of.Year + Interaction.Type + LAT + SST + Year) and
correctly classified the species in 78% (155/199) of
model data cases (Tables 2 & 3). This correct classifi-
cation rate for all 6 species combined was signifi-
cantly higher (p < 0.001, permutation test) than the
rate expected by chance (49%). Humpback whale
cases were classified correctly as Megaptera novae -

angliae 91% of the time, which was signif-
icantly higher (p < 0.001) than the 63%
rate expected by chance. Correct classifi-
cation (as Eschrichtius robustus) of gray
whale cases (64%) was significantly
higher (p < 0.001) than the 29% rate
expected by chance. None of the minke (n
= 2), blue (n = 5), or fin whale (n = 5) model
data cases were correctly classified to spe-
cies (Balaenoptera acutorostrata, B. mus-
culus, and B. physa lus, respectively). Poor
classification ac curacy for minke, blue,
and fin whale cases is not unexpected,
given that these species collectively repre-
sent only 6% of all model data cases and
share many of the same variable attributes
as humpback and gray whale re cords.
Both sperm whale cases were correctly
classified to species Physeter macro-
cephalus (see ‘Discussion’). The 3 most
important variables in the RF model were
Day.of.Year + Interaction. Type + LAT,
based on a comparison of correct classifi-
cation rates of OOB mo del data using
intact versus permuted versions of each
variable (Table 3). Day.of.Year was the
most important variable, based on 15 addi-
tional misclassified OOB cases when this
variable was permuted. The next most
important variable was Interaction.Type,
with 12 additional mis classified cases, fol-
lowed by LAT, with 9 additional misclassi-
fied cases.

Differences in the documented types of
fishing gear entangling humpback and
gray whales were evident (Table 4).

Entanglements in net fishery gear were relatively
rare for humpback whales (7/126 = 5%), compared
with gray whales (14/59 = 24%). Entanglements in
pot or trap gear were greater for humpback (67/126 =
53%) and gray whales (23/59 = 39%) compared to
net gear. The fraction of entanglements where the
gear type could not be identified was similar (~40%)
for humpbacks (52/126) and gray whales (22/59). Dif-
ferences in gear types between the 2 species may
reflect multiple factors, including the spatial/tempo-
ral overlap of each species with different fisheries
and possible observation biases in the ability to
detect one gear type  versus another. For example,
monofilament gillnet entanglements are more diffi-
cult to detect at a distance than pot/trap gear ent -
anglements; the latter usually include highly visible
buoys trailing behind the whale.
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Fig. 2. Expected (null) and observed correct classification rates for cross-
validated out-of-bag (OOB) model data. Expected values are based on
permuting the response variable ‘Species’ 1000 times. This is equivalent
to random assignment of a species to each model data observation based
on observed species proportions. Observed correct classification rates
from the random forest model are shown as a vertical red line for (a) all
species combined, (b) gray whale, and (c) humpback whale. The proba-
bility that observed correct classification rates were less than or equal 

to null distribution correct classification rates was < 0.001 in all cases
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Species classifications for 35 un identified novel da ta
cases included 24 humpback whales and 11 gray
whales (Table 5). These classifications are based on
the plurality vote of 500 RF trees. For example, novel
data case #1 in Table 5 shows that the overall classifi-
cation was gray whale, based on 86% of forest trees
assigning this species. No novel data cases resulted in
an overall classification of minke, blue, fin, or sperm
whale, but most novel cases include a small percent-
age of RF trees assigning these species. Despite the
lack of minke, blue, fin, or sperm whale plurality vote
classifications, the proportion of trees predicting each
species is analogous to a  species assignment probabil-
ity, where higher values imply greater confidence. For
example, no vel case #20 in Table 5 has the following
assignment probabilities for minke, blue, fin, gray,
humpback, and sperm whales, respectively: 0.002,
0.002, 0.01, 0.042, 0.944, and 0.00. Thus, the assigned
species is hump back whale with a 94% probability.

However, all 6 species assignment
probabilities can be used to prorate
this novel data case. One alterna-
tive to accepting species classifica-
tions based on the plurality votes is
to sum individual species classifi-
cation probabilities over all 35
novel data cases. This yields frac-
tional species classifications, re-
sulting in 0.218 minke, 0.462 blue,
0.77 fin, 11.97 gray, 21.5 hump-
back, and 0.078 sperm whale en-
tanglements (Table 5). This ap-
proach yields approximately the
same number of gray and hump-
back ent anglements as the plural-
ity vote approach, but it does a bet-
ter job of representing the rare
species classes by assigning them
some small probability of occur-
rence, which is otherwise zero
with the plurality vote results. The
uncertainty of the plurality vote
classifications can also be ex -
pressed as the range of summed
species classifications for each of
the 500 individual RF trees. For ex-
ample, summing the species classi-
fications from tree #1 of the RF
model results in the following clas-
sifications for the 35 novel data
cases: 4 fin whales, 11 gray whales,
20 humpback whales, and zero
classifications for the remaining

species. Tree #500 yields 1 fin whale, 9 gray whale, 24
humpback whale, and 1 sperm whale classification.
Confidence intervals (95%) for all species classifica-
tions were calculated by summing species classifica-
tions individually for all 500 RF trees and identifying
the 2.5th and 97.5th percentiles of the sums over all 35
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Permuted OOB% Number of cases correctly classified
variable correct All species BA BM BP ER MN PM

None 0.779 155 0 0 0 38 115 2
SST 0.749 149 0 0 0 35 112 2
Year 0.734 146 0 0 0 36 108 2
LAT 0.734 146 0 0 0 35 111 0
Interaction.Type 0.719 143 0 0 0 33 108 2
Day.of.Year 0.704 140 0 0 0 30 108 2

Table 3. Variable importance as measured by the decrease in classification
 accuracy when each variable is permuted. Variables appear in increasing order of
importance, where the cost of permutation is the decrease in the number of cor-
rectly classified out-of-bag (OOB) cases. Permuting the variable Day.of.Year had
the largest cost (8%) to classification accuracy, resulting in 15 fewer correct classi-
fications than a random forest model with all variables intact. BA = minke whale,
BM = blue whale, BP = fin whale, ER = gray whale, MN = humpback whale, PM = 

sperm whale. See Table 1 for description of variables

Net Pot/trap Unidentified 
fishery fishery fishery

Minke 2 0 0
Blue 0 3 2
Fin 0 0 5
Gray 14 23 22
Humpback 7 67 52
Sperm 2 0 0
Unidentified 5 8 21

Table 4. Number of large-whale entanglement cases docu-
mented in different gear types

Minke Blue Fin Gray Hump- Sperm Correctly Classified 
back Observed Expected

Minke 0 0 0 1 0 1 0 0.01
Blue 0 0 0 0 5 0 0 0.02
Fin 0 0 0 2 3 0 0 0.02
Gray 0 0 0 38 21 0 0.64 0.29
Humpback 0 1 0 10 115 0 0.91 0.63
Sperm 0 0 0 0 0 2 1.00 0.01

Table 2. Random forest confusion matrix and correct classification rates for cross-
validated out-of-bag (OOB) large-whale entanglement cases of known species.
Rows represent known species and columns represent number of classifications of
each species. The overall correct classification rate for OOB entanglement cases
was 0.78, or 155 of 199 model data cases. The last column shows expected correct
classification rates under the condition of permuting the response variable (‘Spe-
cies’). This is equivalent to a null distribution of OOB correct classification rates 

where all variables lack predictive value
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novel data cases. The resulting 95% species classifi-
cation intervals for all 500 RF trees were: 0−2 minke
whales, 0−2 blue whales, 0−3 fin whales, 6−17 gray
whales, 16−27 humpback whales, and 0−1 sperm
whales.

DISCUSSION

Nearly all of the known-species entanglement
cases (92%) involved humpback and gray whales, 2
species that tend to utilize the California Current in
different seasons and which are documented in net
and pot/trap gear at different rates. High rates of cor-

rect species classification from the RF model are
largely due to differences in seasonal occurrence of
gray and humpback whales, proportions of entangle-
ments involving net versus pot/trap gear, and the
locations of the observed entanglements (Table 3).
These differences are reflected by the identification
of Day.of.Year, Interaction.Type, and LAT as the 3
most important variables in terms of their numerical
contribution to correct classification rates (Table 3).
Low classification accuracy for minke, blue, and fin
whale model data cases is expected, given that these
cases comprise only 6% of the observations.

The correct classification of both sperm whale
model data cases was initially surprising because
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Case Day.of. Year Interaction.Type SST LAT BA BM BP ER MN PM Classifi-
Year cation

1 97 2007 Pot/trap fishery 9.6 38.28 0.02  0 0.01  0.86  0.11  0 ER
2 165 2007 Pot/trap fishery 11 37.01 0.004 0 0.002 0.35  0.644 0 MN
3 184 2007 Pot/trap fishery 13.1 39.44 0.002 0 0.072 0.4   0.526 0 MN
4 231 2008 Net fishery 13.9 37.70 0.048 0.002 0.014 0.232 0.702 0.002 MN
5 239 2008 Pot/trap fishery 16.6 37.61 0.008 0 0.012 0.13  0.842 0.008 MN
6 245 2008 Pot/trap fishery 19.5 34.26 0.002 0.012 0.022 0.148 0.81  0.006 MN
7 78 2009 Unidentified fishery interaction 10.6 39.13 0.024 0 0.048 0.78  0.148 0 ER
8 193 2009 Net fishery 17.9 33.46 0.012 0.002 0.114 0.502 0.348 0.022 ER
9 83 2010 Unidentified fishery interaction 10.1 38.70 0.03  0 0.022 0.82  0.128 0 ER

10 122 2010 Unidentified fishery interaction 11.4 34 0.02  0 0.046 0.638 0.292 0.004 ER
11 187 2010 Unidentified fishery interaction 16.6 34.33 0.014 0.002 0.092 0.436 0.434 0.022 ER
12 282 2010 Unidentified fishery interaction 12.3 37.69 0 0 0.026 0.066 0.906 0.002 MN
13 197 2011 Unidentified fishery interaction 8.7 36.80 0 0 0.024 0.502 0.474 0 ER
14 248 2011 Pot/trap fishery 11.5 44.61 0 0.002 0.008 0.268 0.722 0 MN
15 176 2012 Pot/trap fishery 10.8 38.26 0 0 0.046 0.212 0.742 0 MN
16 235 2013 Net fishery 9.8 42.72 0.002 0 0.006 0.796 0.194 0.002 ER
17 63 2014 Pot/trap fishery 10.3 45.33 0.002 0 0 0.694 0.304 0 ER
18 106 2014 Unidentified fishery interaction 8.2 42.04 0.004 0 0 0.848 0.148 0 ER
19 156 2014 Pot/trap fishery 19.6 33.41 0 0.124 0.03  0.154 0.692 0 MN
20 269 2014 Unidentified fishery interaction 18.6 36.99 0.002 0.002 0.01  0.042 0.944 0 MN
21 60 2015 Unidentified fishery interaction 15.5 34.14 0 0 0.014 0.808 0.178 0 ER
22 123 2015 Unidentified fishery interaction 13.7 36.58 0.004 0.002 0 0.148 0.846 0 MN
23 129 2015 Unidentified fishery interaction 9.9 39.42 0 0 0 0.388 0.612 0 MN
24 148 2015 Net fishery 16.7 34.15 0.01  0.008 0.014 0.468 0.5   0 MN
25 237 2015 Unidentified fishery interaction 22.2 33.61 0 0.11  0.084 0.34  0.466 0 MN
26 239 2015 Unidentified fishery interaction 19.3 34.43 0 0.004 0.004 0.174 0.818 0 MN
27 270 2015 Net fishery 23.2 34.04 0 0.01  0.014 0.462 0.514 0 MN
28 311 2015 Unidentified fishery interaction 14.5 37.70 0 0.016 0.002 0.016 0.966 0 MN
29 325 2015 Unidentified fishery interaction 17.9 34.14 0.004 0.002 0.022 0.086 0.882 0.004 MN
30 331 2015 Unidentified fishery interaction 14.4 37.40 0.006 0.008 0 0.006 0.974 0.006 MN
31 119 2016 Unidentified fishery interaction 10.4 37.61 0 0.006 0 0.098 0.896 0 MN
32 134 2016 Unidentified fishery interaction 13.6 36.16 0 0.008 0 0.086 0.906 0 MN
33 136 2016 Unidentified fishery interaction 13.3 37.26 0 0.012 0.002 0.004 0.982 0 MN
34 144 2016 Unidentified fishery interaction 13.1 36.87 0 0 0 0.004 0.996 0 MN
35 272 2016 Unidentified fishery interaction 13.2 37.97 0 0.13  0.01  0.004 0.856 0 MN

Sum of individual species classification probabilities 0.22 0.46 0.77  11.97 21.5  0.078

Table 5. Random forest (RF) species classifications for novel data cases. Columns 2−6 represent variables used in the RF model.
Values in species columns are the fraction of RF trees resulting in a given species classification. The overall classification for a
novel data case is based on the plurality vote of all RF trees and appears in the last column. BA = minke whale, BM = blue
whale, BP = fin whale, ER = gray whale, MN = humpback whale, PM = sperm whale. See Table 1 for description of variables
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they represent only 1% of model data cases and such
minor response classes are usually misclassified at a
nearly 100% rate. Both sperm whale entanglements
occurred in the same gillnet fishing set and thus, can-
not be considered independent events because they
involved whales from the same social group entan-
gled at the same time and location. All 5 model data
variables, Year + Day.of.Year + Interaction.Type +
MEI.mean + LAT, are identical for the 2 sperm whale
entanglements, so there is a certainty of each sample
ending up in the same terminal node of a fully grown
classification tree (terminal nodes contain a single
sample or response class, the default for classifica-
tion). Due to bootstrap sampling with replacement of
model data during tree construction, 1 sperm whale
case has approximately a 2/3 probability of being
used for tree construction and the other case has a
1/3 probability to serve as an OOB sample to be
cross-validated (Efron & Tibshirani 1997). When the
2 cases are split between tree construction and OOB
sample roles, the OOB sample will be assigned to the
terminal node occupied by the first sperm whale
case, because the variables are identical for each.
This represents a special case of overfitting, which
could be addressed by excluding the 2 sperm whale
entanglements from analysis. However, the value of
including these cases is that a RF data model lacking
sperm whale entanglements would assign a zero risk
of such entanglements in the novel data, which is
known a priori to be untrue.

Despite poor classification accuracy for a few spe-
cies with small sample sizes, their inclusion in the
RF model is worthwhile because fractional estimates
of entanglements can be produced for the novel
data, despite the lack of any plurality vote assign-
ments for these minor species. The classification
accuracy for humpback and gray whales is, how-
ever, encou raging, in terms of prorating unknown
species entanglement cases, the majority of which
should comprise these 2 species. The importance of
accurately assigning unknown cases to species can
be considered as a form of risk management. For
humpback and gray whale populations along the
US west coast, there is a greater penalty for misclas-
sifying a humpback en tanglement. This is because
humpbacks are less abundant than gray whales
(estimated population sizes ~ 2000 and 20000,
respectively) and humpbacks have lower allowable
anthropogenic injury and mortality thresholds
(potential biological removal or PBR; Wade 1998)
under the Marine Mammal Protection Act. Current
PBR levels for each population are 11 humpbacks
versus 624 gray whales (Carretta et al. 2017).

The variable Day.of.Year was identified as the most
important predictor variable, based on the greatest
permutation cost to correct classification rates, but
the context of variable importance is worth discus-
sion. Algorithms such as RFs are designed to simulta-
neously handle many predictors and automatically
deal with interactions between variables (Breiman
2001a,b). However, variable importance in the con-
text of RF usually measures the effect on classifica-
tion accuracy of permuting a single variable at a
time. Some methods used to assess RF variable
importance, such as rfPermute (Archer 2016), include
statistical p-values for each variable. This is a useful
tool for considering variables for model inclusion.
However, analysts may be tempted to arbitrarily
eliminate candidate variables that do not meet
default p-value thresholds (p < 0.05). Such an
approach may un necessarily exclude multiple non-
significant predictors whose collective classification
power is superior to a smaller set of significant pre-
dictors (Breiman 2001a,b). It is recommended that
analysts consider wider inclusion of candidate vari-
ables in RF models and examine cross-validated cor-
rect classification rates under different suites of vari-
able numbers and combinations.

Species classifications for novel data could also be
obtained via simple proration: multiplying observed
model data species proportions by the number of
novel cases (n = 35). This results in the following
number of estimated entanglements for unidentified
cases: 0.01 × 35 = 0.35 minke whales, 0.025 × 35 =
0.875 blue whales, 0.025 × 35 = 0.88 fin whales, 0.296
× 35 = 10.4 gray whales, 0.63 × 35 = 22 humpback
whales, and 0.01 × 35 = 0.35 sperm whales. The RF
model resulted in similar species classifications
(0.218 minke, 0.462 blue, 0.77 fin, 11.97 gray, 21.5
humpback, and 0.078 sperm whales). The similarity
in species classifications using simple proration and
the RF model suggests that the 35 novel data cases
may reflect an unbiased sample of the known-
 species model data observations. However, it is un -
known whether or not the model data are repre -
sentative of all large-whale entanglements. For
example, gray whales generally occur closer to
shore, compared to other species. This may introduce
a positive detection bias for gray whales in the model
data, as they may be more likely to be detected and
reported from observers on shore or whale-watching
vessels. Additionally, recreational vessel traffic is
generally concentrated closer to shore, which would
amplify this bias. If a positive gray-whale bias exists,
the model data may represent an underestimation of
other species’ entanglements as a fraction of total
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entanglements. While the simple proration is easy to
implement, it is crude and forfeits potential insights
into predictor variables that may be related to entan-
glement risk. However, if a suitable species identifi-
cation model cannot be generated using RF or some
other method, then at a minimum, unidentified cases
should be prorated to fully account for entanglement
risks to all species.

The RF species assignment approach described
here has applications to other wildlife studies, partic-
ularly transect surveys, where a non-trivial fraction of
detections may lack species identifications: raptors
(Andersen et al. 1985), seabirds (Piatt et al. 2011),
large whales (Barlow & Forney 2007), and sea turtles
(Seminoff et al. 2014). When unidentified detections
are not prorated to species, they are often omitted
from analyses and can result in underestimates of
animal abundance. Other applications may include
species proration of unidentified bycatch in commer-
cial fisheries and species assignments of large-whale
vessel strikes.
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