Explicit Forecasts of Low-Level Rotation from Convection-Allowing Models for Next-Day Tornado Prediction
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Explicit Forecasts of Low-Level Rotation from Convection-Allowing Models for Next-Day Tornado Prediction

Filetype[PDF-3.06 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Three diagnostic fields were examined to assess their ability to act as surrogates for tornadoes in a convection-allowing ensemble system run during the spring of 2015. The diagnostics included midlevel (2–5 km AGL) updraft helicity (UH25), low-level (0–3 km AGL) updraft helicity (UH03), and low-level (1 km AGL) vertical relative vorticity (RVORT1). RVORT1 was used as a direct measure of low-level rotation strength. Each storm’s RVORT1 magnitude and near-storm environment properties were extracted from each hour’s forecasts using an object-based approach. The near-storm environments of storm objects with large magnitudes of RVORT1 were very similar to the environments identified as conducive for the development of tornadic supercells in previous proximity sounding-based studies (e.g., low lifted condensation levels and strong low-level shear). This motivated the use of RVORT1 as a direct surrogate for tornadoes, without the need to filter forecasts with environmental information. The relationship between UH25 and UH03 was also explored among the simulated storms; UH03 only exceeded UH25 in storms occurring within low-CAPE/high-shear environments, while UH03 rarely exceeded UH25 in traditional supercell environments. Next-day ensemble surrogate severe probability forecasts (E-SSPFs) for tornadoes were generated using these diagnostics for 92 forecasts, with thresholds based on the number of observed tornado reports. E-SSPFs for tornadoes using RVORT1 and UH03 were more skillful than E-SSPFs using UH25. The UH25 E-SSPFs possessed little skill, regardless of threshold or smoothing length scale. All E-SSPFs suffered from poor sharpness at skillful scales, with few forecast probabilities greater than 40%.
  • Source:
    Weather and Forecasting, 31(5), 1591-1614
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1