U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Explicit Forecasts of Low-Level Rotation from Convection-Allowing Models for Next-Day Tornado Prediction



Details

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Three diagnostic fields were examined to assess their ability to act as surrogates for tornadoes in a convection-allowing ensemble system run during the spring of 2015. The diagnostics included midlevel (2–5 km AGL) updraft helicity (UH25), low-level (0–3 km AGL) updraft helicity (UH03), and low-level (1 km AGL) vertical relative vorticity (RVORT1). RVORT1 was used as a direct measure of low-level rotation strength. Each storm’s RVORT1 magnitude and near-storm environment properties were extracted from each hour’s forecasts using an object-based approach. The near-storm environments of storm objects with large magnitudes of RVORT1 were very similar to the environments identified as conducive for the development of tornadic supercells in previous proximity sounding-based studies (e.g., low lifted condensation levels and strong low-level shear). This motivated the use of RVORT1 as a direct surrogate for tornadoes, without the need to filter forecasts with environmental information. The relationship between UH25 and UH03 was also explored among the simulated storms; UH03 only exceeded UH25 in storms occurring within low-CAPE/high-shear environments, while UH03 rarely exceeded UH25 in traditional supercell environments. Next-day ensemble surrogate severe probability forecasts (E-SSPFs) for tornadoes were generated using these diagnostics for 92 forecasts, with thresholds based on the number of observed tornado reports. E-SSPFs for tornadoes using RVORT1 and UH03 were more skillful than E-SSPFs using UH25. The UH25 E-SSPFs possessed little skill, regardless of threshold or smoothing length scale. All E-SSPFs suffered from poor sharpness at skillful scales, with few forecast probabilities greater than 40%.
  • Source:
    Weather and Forecasting, 31(5), 1591-1614
  • DOI:
  • ISSN:
    0882-8156 ; 1520-0434
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:cfe310b813538aa38a6a9908cf189ebdd006e60ed8dbbd0f73b124b49b82d9994c28a059e2d8b704127a6c1833b967f73acc9e0a5d3e7ac07c45d0751a8a77f7
  • Download URL:
  • File Type:
    Filetype[PDF - 3.06 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.