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ABSTRACT

Three diagnostic fields were examined to assess their ability to act as surrogates for tornadoes in a convection-

allowing ensemble system run during the spring of 2015. The diagnostics included midlevel (2–5 km AGL)

updraft helicity (UH25), low-level (0–3 km AGL) updraft helicity (UH03), and low-level (1 km AGL) vertical

relative vorticity (RVORT1). RVORT1 was used as a direct measure of low-level rotation strength. Each

storm’sRVORT1magnitude and near-storm environment propertieswere extracted fromeach hour’s forecasts

using an object-based approach. The near-storm environments of storm objects with large magnitudes of

RVORT1 were very similar to the environments identified as conducive for the development of tornadic su-

percells in previous proximity sounding-based studies (e.g., low lifted condensation levels and strong low-level

shear). This motivated the use of RVORT1 as a direct surrogate for tornadoes, without the need to filter

forecasts with environmental information. The relationship betweenUH25 andUH03was also explored among

the simulated storms; UH03 only exceeded UH25 in storms occurring within low-CAPE/high-shear environ-

ments, while UH03 rarely exceeded UH25 in traditional supercell environments. Next-day ensemble surrogate

severe probability forecasts (E-SSPFs) for tornadoes were generated using these diagnostics for 92 forecasts,

with thresholds based on the number of observed tornado reports. E-SSPFs for tornadoes using RVORT1 and

UH03 were more skillful than E-SSPFs using UH25. The UH25 E-SSPFs possessed little skill, regardless of

threshold or smoothing length scale. All E-SSPFs suffered from poor sharpness at skillful scales, with few

forecast probabilities greater than 40%.

1. Introduction

Convection-allowing models (CAMs) have permitted

the development of novel forms of forecast guidance

summarizing the potential for severe convective

weather based on their explicit predictions of convective

storms (e.g., Kain et al. 2008; Sobash et al. 2011, 2016;

Clark et al. 2012, 2013). Identifying supercells in CAM

forecasts has garnered particular interest, as a result of

the disproportionate share of severe weather reports

produced by these intense, damaging storms (Gallus

et al. 2008). Kain et al. (2008) proposed computing up-

draft helicity (UH), the product of vertical velocity and

vertical vorticity over a specified depth, to identify

midlevel (2–5 km AGL) mesocyclones, and thus super-

cells, in CAM output. Later work has successfully used

midlevel UH as a surrogate for the occurrence of severe

weather hazards emanating from supercells [e.g., strong

winds, large hail, and tornadoes; Sobash et al. (2011,

2016); Clark et al. (2013)] and further verified the ability

of midlevel UH to reliably identify supercells in CAM

output (e.g., Naylor et al. 2012).

While this work has demonstrated the usefulness of

midlevel UH as a diagnostic for identifying simulated
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supercells, discriminating tornadic from nontornadic

events using present-day CAMs presents a more sub-

stantial, and so far unaddressed, challenge. Observa-

tional studies of supercells routinely indicate that the

presence of amidlevel mesocyclone, whichmidlevel UH

was initially designed to detect, is not a sufficient con-

dition for tornado occurrence (Trapp et al. 1999, 2005;

Wakimoto et al. 2004). In fact, Trapp et al. (2005) esti-

mated that only 15% of storms with midlevel mesocy-

clones produce tornadoes. Assuming modeled storms

possess a similar relationship, then midlevel UH alone is

not an appropriate surrogate for tornado occurrence,

and an additional surrogate that is more closely related

to tornadogenesis is needed. While directly sampling

CAM output for the presence of tornado-like vortices1

would be preferable to relying on surrogates, present-

day CAMs have horizontal grid spacings between 1 and

4km, where only storm-scale circulations, such as me-

socyclones, are close to being resolved. Resolving

tornado-like vortices requires CAMs with grid spacings

well below 1km (e.g., Schenkman et al. 2014), which will

not be available in operational NWP systems for many

years or, possibly, decades.

Despite the obstacles involved with using midlevel UH

as a surrogate for tornado occurrence in CAM output,

several recent studies have presented encouraging results

using midlevel UH to anticipate next-day tornado po-

tential. For example, Clark et al. (2012, 2013) used the

total time- and space-integrated midlevel UH swath

length from a CAMensemble as a surrogate for observed

tornado track length over a collection of cases in 2011 and

2012. A positive correlation existed between the forecast

and observed tornado track length after removing mid-

level UH tracks that were produced by elevated or high-

based convection, as determined by CAM forecasts of

lifted condensation level (LCL) and convective inhibition

(CIN).While the forecasts examined inClark et al. (2013)

were for aggregated tornado pathlength on a given day,

Jirak et al. (2014) andGallo et al. (2016) used forecasts of

midlevel UH, combined with similar environmental in-

formation (e.g., CAPE, LCL, significant tornado pa-

rameter) as in Clark et al. (2013), to produce probabilistic

guidance akin to Storm Prediction Center probabilistic

forecasts that was superior to guidance based strictly on

midlevel UH. These results suggest that CAMs appear

capable of providing skillful guidance for the next-day

tornado threat, only when forecasts of midlevel UH are

combined with environmental parameters that skillfully

discriminate tornado-prone environments.

Filtering CAM forecasts of midlevel UH with envi-

ronmental information reduces the overforecasting bias

that plagues guidance solely based on midlevel UH as a

surrogate for tornadoes (Gallo et al. 2016). The choices

of environmental fields to use for filtering are informed

by previous work that used proximity soundings to re-

veal relationships between characteristics of a storm’s

inflow environment and its propensity to produce low-

level rotation and tornadoes (e.g., Brooks et al. 1994;

Rasmussen and Blanchard 1998; Rasmussen 2003;

Thompson et al. 2003, hereafter T03; Thompson et al.

2012). These studies largely omit tornadic storms oc-

curring in nontraditional environments (e.g., lowCAPE/

high shear) or tornadoes that develop in quasi-linear

convective systems (QLCSs) or tropical cyclones. For

example, the T03 dataset excluded tropical cyclone su-

percells from their dataset. Having a surrogate that is

directly related to the process of tornadogenesis would

remove the need for environmental filters that may not

perform equitably across different environments and

storm types.

Toward this end, we have chosen to interrogate

CAMs for low-level (,3km AGL) rotation that can

identify the presence and intensity of low-level meso-

cyclones in simulated supercells. Compared to midlevel

rotation (i.e., 2–5 km AGL UH), low-level mesocyclone

strength is more strongly associated with tornado oc-

currence (Trapp et al. 2005) and with tornado intensity

(Smith et al. 2015). Further, field studies have directly

tied the behavior and strength of low-level mesocy-

clones to tornadogenesis (e.g., Markowski et al. 2012;

Skinner et al. 2014). Finally, using low-level rotation as a

surrogate for tornadoes may improve forecasts of tor-

nadoes occurring in storms where midlevel rotation

(.3 km AGL), and thus midlevel UH, is reduced, for

example, mesovortices in QLCSs (e.g., Trapp and

Weisman 2003) and shallow mesocyclones in miniature

supercells associated with landfalling tropical cyclones

(e.g., McCaul 1991; McCaul and Weisman 1996; Eastin

and Link 2009; Edwards et al. 2012).

However, a prerequisite step to using explicit fore-

casts of low-level rotation as a surrogate for tornadoes is

to verify the model’s ability to produce low-level rota-

tion within environments that are favorable for torna-

does in observed supercells. In other words, an

additional goal of this work is to confirm the model can

mimic results obtained by proximity sounding studies

(e.g., T03). If the magnitude of low-level rotation in

simulated storms depends on similar parameters to

1Here, we use the term tornado-like vortex to describe a near-

surface vortex that occurs in association with a parent thunder-

storm using CAMs run at resolutions that partially, but not fully,

resolve tornado-scale circulations [O(100) m]. The term tornado-

like vortex has also been used in the literature to describe an ide-

alized simulation of a tornado that is not associated with a parent

thunderstorm, regardless of model resolution (e.g., Rotunno 1979).
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those identified in T03 and other proximity-sounding

based studies, it would inspire confidence that the model

is capable of producing low-level rotation for the right

reasons [e.g., as a result of interaction of the storm’s

updraft with environment- and storm-generated vortic-

ity; Markowski et al. (2012)]. Additionally, it would lend

support to the use of explicit forecasts of low-level ro-

tation as a surrogate for tornadoes without the need to

filter based on environmental parameters.

In some sense, this goal is similar to the goals of the

pioneering work with cloud-scale models that examined

the parameter space of environmental conditions con-

trolling convectivemode and behavior (e.g.,Weisman and

Klemp 1982, 1984), with a focus here on the development

of low-level rotation in simulated storms. Low-level ro-

tation has been explored as a surrogate for tornadoes in

recent storm-scale data assimilation studies in a small

collection of cases (e.g., Stensrud et al. 2009; Dawson et al.

2012; Yussouf et al. 2015; Wheatley et al. 2015). Yet, it

remains unclear whether present-day CAMs with hori-

zontal grid spacings near 3km are capable of reproducing

intense low-level rotation across a broader spectrum of

environments that support tornadoes.

To investigate the relationship between model envi-

ronment and low-level rotation, we use a collection of

ensemble forecasts from a 3-km horizontal grid-spacing

CAM ensemble run during spring 2015 (Schwartz et al.

2015). From this dataset, we extract three surrogate

fields related to rotation within simulated convective

storms, two of which are directly related to low-level

(,3 km AGL) rotation that have not previously been

used as surrogate fields in next-day CAM forecasts. The

first, 2–5km AGL UH (UH25), is the traditional UH

diagnostic introduced by Kain et al. (2008) and exam-

ined in Clark et al. (2013) and Gallo et al. (2016). The

second, 0–3 kmAGLUH (UH03), is the same as UH25,

except UH is calculated using fields between the surface

and 3km AGL. The third, 1 km AGL relative vertical

vorticity (RVORT1), is used as a measure of the rota-

tion at a fixed level AGL, rather than over an integrated

depth as in UH25 and UH03.

In section 2, details of the ensemble forecasts and

forecast guidance generation procedure are presented,

followed by an examination of the model low-level ro-

tation climatology in section 3. Section 3 also examines

the environments in which intense low-level rotation

occurs in the forecasts compared to results previously

identified as conducive for tornadic supercells in prox-

imity soundings (e.g., T03). Based on these results, next-

day forecast guidance for tornadoes using the low-level

rotation surrogates is presented and verified in the final

subsection of section 3. A summary and discussion of the

findings are presented in section 4.

2. Methodology

a. Ensemble forecasts

Ensemble forecasts were generated from a continu-

ously cycled ensemble Kalman filter (EnKF) based en-

semble system currently run in real time at NCAR using

the Advanced Research version of the Weather Re-

search and Forecasting Model (WRF; Skamarock et al.

2008) and the Data Assimilation Research Testbed

(DART; Anderson et al. 2009). The cycled system

produces a set of 50 analyses at 15-km horizontal grid

spacing every 6 h by assimilating a variety of surface and

upper-air observations using the ensemble adjustment

Kalman filter (Anderson 2001, 2003) within DART and

integrating the forecasts to the next assimilation time

withWRF. Following the assimilation step at 0000UTC,

the first 10 members from the set of 50 analyses from

0000 UTC are downscaled to 3 km over a continental

United States (CONUS)-spanning domain (Fig. 1) and

integrated to 48h using WRF. Further details about the

analysis and ensemble forecast system are found in

Schwartz et al. (2015). Here, we use the set of 92 ten-

member ensemble forecasts initialized daily at 0000UTC

from 30 April through 30 July 2015. Although this is a

larger collection of forecasts relative to other studies (e.g.,

Schwartz et al. 2015), because of the rarity of tornado

events this remains a fairly small sample, and the results

are only valid over the warm season.

b. Rotation diagnostics

The UH25, UH03, and RVORT1 diagnostics were

implemented in WRF as ‘‘hourly maximum’’ fields

(Kain et al. 2010). These fields track the maximum value

FIG. 1. Nested forecast domains for the 2015 NCAR real-time

ensemble system. Verification of E-SSPFs is performed only over

the speckled region. [Adapted from Schwartz et al. (2015).]
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of the diagnostic at each grid point that occurs at any

time step within each hour of the forecast. As in Kain

et al. (2008), UH25 was computed as

UH255 �
5 km

2km

wz dz ,

where w is the vertical velocity and z is the vertical

vorticity at a grid point. The value of UH03 was com-

puted in an analogous manner, with the integration oc-

curring between 0 and 3km AGL. Finally, RVORT1

was computed using vertical vorticity computed as

dy/dx 2 du/dy, where u and y are the zonal and merid-

ional wind components, respectively.

c. Storm object and environment identification

Storm objects and their environments were extracted

from the ensemble forecasts valid between 1200 and

1200 UTC the following day (i.e., forecast hours 12–36).

The enhanced watershed algorithm (Lakshmanan et al.

2009; Lakshmanan 2012), as implemented in the ha-

gelslag processing package (Gagne et al. 2016), was used

to identify objects in the model output. The watershed

algorithm, as applied here, takes a two-dimensional

model field and identifies maxima to begin the object-

finding process. The objects initiated at these maxima

grow until the saliency is reached (Table 1) or points are

encountered that are associated with other objects.

While object size is partially controlled by the saliency

parameter, an additional minimum size criterion is also

applied to remove objects smaller than 90 km2 [to re-

move objects smaller than the effective resolution of the

model, as in Davis et al. (2006) and Johnson et al.

(2011)]. The benefit of using the watershed object-

finding algorithm is that it does not depend on a pre-

defined threshold above which objects are created; here,

regions are grown beginning at fieldmaxima. The reader

is encouraged to consult Lakshmanan et al. (2009) for

full details of the enhanced watershed algorithm.

For this work, objects were identified using the UH25

field, with the minimumUH25 threshold set to 25m2 s22.

Other watershed algorithm settings are provided in

Table 1. We chose UH25 to identify objects since the

present work focuses on the behavior of low-level and

midlevel rotation within storms possessing some degree

of midlevel rotation; other fields used as input into the

object identification algorithm to identify storm objects

(e.g., hourly maximum vertically integrated graupel)

produced similar results. The watershed algorithm, as

used in this work, does not identify storms per se, but

rather the associated hourly maximum UH25 swaths.

Storm and environmental variables were extracted

from the forecasts at the collection of points composing

each object (Table 2). The storm variables were

TABLE 1. List of settings for the enhancedwatershed algorithm, defined using the terminology in Lakshmanan et al. (2009). The saliency

size was chosen to identify longer, more coherent, UH25 swaths, while reducing the number of smaller, transient, UH25 features (smaller

saliency thresholds resulted in longUH25 swaths being broken into multiple objects). No smoothing was applied to the UH25 field during

the object-finding process, as a nine-point average is applied each time step when computing the UH25 field in the WRF Model.

Field Min (a) Max (b) Increment (d) Saliency (km2) Smoothing

UH25 25m2 s22 250m2 s22 5m2 s22 900 None

TABLE 2. List of storm and environmental properties extracted from the ensemble forecasts using the enhanced watershed object-

finding algorithm. For the storm properties, the maximum value within each object is extracted, while for the environmental properties,

the mean value within each object is extracted.

Field Name

Storm or

environment

UH25 Hourly max updraft helicity within the 2–5 km AGL layer Storm

UH03 Hourly max updraft helicity within the 0–3 km AGL layer Storm

RVORT1 Hourly max 1 km AGL relative vorticity Storm

SBCAPE Surface-based parcel convective available potential energy Environment

SBCIN Surface-based parcel convective inhibition Environment

SBLCL Surface-based parcel lifted condensation level Environment

SRHEL01 0–1 km AGL storm-relative helicity (computed using Bunkers storm motion) Environment

SRHEL03 0–3 km AGL storm-relative helicity (computed using Bunkers storm motion) Environment

SHR01 0–1 km AGL shear vector magnitude Environment

SHR06 0–6 km AGL shear vector magnitude Environment

STP Fixed-layer significant tornado parameter, defined as STP5 (SBCAPE/1500 J kg21)3
[(20002SBLCL)/1000m]3 (SRHEL01/150m2 s22)3 (SHR06/20m s21), where the SBLCL

term can only vary between 0.0 and 1.0, and the SHR06 term can only vary between 0.625 and 1.5

Environment
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extracted from the hourly maximum fields valid at the

same forecast hour as the UH25 object, while the envi-

ronmental variables used the forecast valid at the hour

prior to the time the object was defined, similar to the

method used by Clark et al. (2012). (Figure 2 provides

some additional detail into this process.) The maximum

value of each field within the set of grid points defining

the object was stored at each forecast hour for the

storm properties, while the mean value was used for

the environment properties. Using the mean value for

the environmental properties reduces the influence of

grid points that may be convectively contaminated

near the storm.

The final output of the object identification process

was a collection of;192 000 objects and their associated

maximum within-storm and mean environmental prop-

erties, facilitating a comparison between attributes of

the storm (e.g., low-level rotation) and the environment

(e.g., low-level shear). The object and environment ex-

traction process is applied individually to each ensemble

member with the results aggregated across all ensemble

members.

d. Creation of next-day tornado guidance

In addition to the creation of storm objects, the

three rotation fields were used to produce next-day

(1200–1200 UTC, forecast hours 12–36) tornado guid-

ance following the procedure of Sobash et al. (2011) and

extended to ensemble forecasts in Sobash et al. (2016).

This procedure does not use the previously created ob-

jects, but applies thresholds to each hourly max rotation

field from each member. This produces a binary field of

ones and zeros (Table 3) that are referred to as surrogate

severe reports (SSRs). The SSRs were mapped onto an

80-km grid,2 where each 80-km grid point could only be

flagged as a ‘‘hit’’ once per 24-h period. The final grid of

SSRs for each 1200–1200UTCperiod was then smoothed

with aGaussian kernel to produce a 24-h surrogate severe

probability forecast (SSPF) for each ensemble member.

AGaussian smoothing kernel width, defined bys, ranged

between s 5 20 and 200km, in 20-km increments. Each

ensemble member’s SSPF was averaged together to

create an ensemble SSPF (E-SSPF) tornado forecast

for each day.

For verification, tornado reports were retrieved from

the Storm Prediction Center’s (SPC) archive, mapped,

and smoothed onto the same 80-km grid as the SSRs to

produce an analogous field of observed storm reports

(OSRs) and a smoothed observation field [termed an

observed severe probability field (OSPF), as in Sobash

et al. (2011)]. The set of SSR thresholds in Table 3 was

selected using the total number of OSRs over the 92-day

period as a benchmark (285 OSRs); that is, the range of

SSR thresholds used here produced SSR biases centered

on 1 (Table 3).

The E-SSPFs created from the SSRs were verified

against the OSPFs (each with the same smoothing

length scale) using the fractions skill score (FSS; Roberts

and Lean 2008) over a domain consisting of most of the

central and eastern United States (Fig. 1). The E-SSPFs

with different s values were used within the FSS to

identify the spatial scales over which the forecasts were

skillful. As described in Roberts and Lean (2008), when

the fractional coverage of the event is small, the spatial

scales where FSS $ 0.5 is deemed the lower limit of the

scales that are believable. In addition to the FSS,

E-SSPFs were evaluated using metrics such as re-

liability, resolution, and the area under the relative op-

erating characteristic (AUC; Wilks 2006).

FIG. 2. Example of UH25 objects associated with forecast con-

vection in western NE on 21 Jun 2015 at two forecast hours (0600

and 0700 UTC). Maximum column reflectivity (contours) and

UH25 objects (filled contours) are plotted together from both the

0600 UTC (black) and 0700 UTC (red) forecasts. The algorithm

uses the set of grid points within each object to extract 1) storm

properties from the same hour’s forecast (e.g., for the 0700 UTC

object in red, the 0700 UTC hourly maximum fields are used) and

2) environmental properties from the previous hour’s forecast (e.g.,

the environment for the 0700 UTC object is taken from the col-

lection of points comprising the 0700 UTC object but using the

0600 UTC forecast).

2 The 80-kmgrid used here is theNCEP 211 grid (http://www.nco.

ncep.noaa.gov/pmb/docs/on388/tableb.html#GRID211). Using

this grid produces probabilities that are consistent with SPC’s

probabilistic convective outlooks. Also, this coarse grid reduces

some of the reporting biases present in the observed severe weather

report database (e.g., Weiss and Vescio et al. 1998). The E-SSPFs

created using the native model grid, by ‘‘flagging’’ all grid points

within 40 km of each 3-km grid point, produced qualitatively similar

results.
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3. Results

a. Model climatology of low-level and midlevel
rotation

To develop a sense for the behavior of the two new

low-level surrogates (UH03 and RVORT1) compared

with UH25, frequency distributions were computed for

one member of the ensemble for the entire 92-day pe-

riod for each forecast hour using the native model grid

points (Fig. 3). Distributions using other members

produced similar results. Three percentiles (99.99th,

99.995th, and 99.999th) were used to identify values as-

sociated with ‘‘extremes’’ in the model climatology.

After stabilizing following the model spinup period,

UH03 values associated with the three percentiles were

approximately half of the corresponding UH25 values

(Fig. 3). While the specific UH25 and UH03 values

varied with forecast hour, the ratio between UH25 and

UH03 was not sensitive to the time of day and generally

remained near 0.5 (i.e., UH03/UH25 ; 0.5). The UH25

TABLE 3. Thresholds, SSR biases, and numbers of SSRs for UH25, UH03, and RVORT1. The boldface row indicates the thresholds that

produce an SSR bias closest to 1, when compared to the number of OSRs (285).

UH25 (m2 s22) UH03 (m2 s22) RVORT1 (s21)

Threshold Bias No. Threshold Bias No. Threshold Bias No.

25 35 9975 20 23.87 6804 0.005 27.7 7894

50 16.64 4743 30 15.17 4323 0.006 17.18 4895

75 9.15 2609 40 10.27 2926 0.007 10.56 3010

100 5.45 1552 50 7.26 2068 0.008 6.46 1842

125 3.42 975 75 3.38 964 0.009 3.99 1136

150 2.2 628 100 1.7 484 0.01 2.4 685

175 1.45 413 110 1.33 378 0.0112 1.29 369

200 0.99 281 120 1.04 296 0.0117 1.01 287

130 0.84 238 0.012 0.87 247

FIG. 3. Model climatology by forecast hour of UH25 (blue),

UH03 (green), and RVORT1 (brown) for the (a) 99.99th,

(b) 99.995th, and (c) 99.999th percentiles. All points in the

3-km forecast domain are included.
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and UH03 magnitudes peaked near forecast hour 24

(i.e., 0000 UTC), when convective coverage and in-

tensity reached a maximum, and decreased during the

overnight convective minimum, as convective intensity

waned. RVORT1 magnitudes for all three percentiles

exhibited similar behavior, with maxima and minima

during similar forecast hours as the UH25 and UH03

distributions.

In addition to the frequency distributions using the

native model grid points, a storm-based climatology was

performed to compare UH25, UH03, and RVORT1

values within storms at each forecast hour over the

entire ensemble. Two-dimensional histograms of storm

counts were created to examine the relationship be-

tween these three surrogate fields (Fig. 4). Both UH25

and UH03 are positively correlated with RVORT1

(Figs. 4a,b), but the strength of the relationship is much

greater between UH03 and RVORT1, which is ex-

pected, since RVORT1 is a component of the UH03

computation. UH25 and UH03 had a strong positive

correlation, with a best-fit line to this distribution

producing a similar scaling between the two fields (i.e.,

UH03;UH253 0.5) to what was determined based on

the grid-based frequency distributions (Fig. 4c). Yet,

FIG. 4. Joint- and marginal-distribution histograms for

(a) RVORT1 andUH25, (b) RVORT1 andUH03, and (c) UH25

and UH03 for forecast hours 13–36 (1200–1200 UTC). Counts of

storms within each bin (using approximately 60 bins of equal

width along each axis) are presented on a log scale. The mean

value of each marginal distribution is indicated by a black line.

The red line is a best-fit line to each distribution, with the r 2 value

also provided. The diagonal black line in (c) is the 1:1 line for the

UH25–UH03 distribution.
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variability exists in this relationship with many storms

possessing UH03 greater or less than 0.5 3 UH25. For

example, there exists a subset of storms that possess

UH03 values greater thanUH25 values (the collection of

points above the diagonal in Fig. 4c). These occur most

frequently for storms with UH25 values , 100m2 s22.

b. Environments of simulated supercells possessing
low-level rotation

An extensive amount of research has examined the

environmental conditions conducive for supercell de-

velopment, strong low-level rotation within supercells,

and tornadoes (e.g., Fawbush and Miller 1954; Brooks

et al. 1994; Rasmussen and Blanchard 1998; Rasmussen

2003; T03, Thompson et al. 2012). These studies used

estimates of the near-storm environment taken from

environmental soundings or model analysis and forecast

soundings (e.g., RapidUpdate Cycle analyses as in T03).

Collectively, these studies have identified environmen-

tal characteristics that discriminate well between tor-

nadic and nontornadic supercells, and the significant

tornado parameter (STP) was developed to combine

those environmental predictors that most strongly dis-

criminate between tornadic and nontornadic supercells

(SHR06, SRHEL01, SBCAPE, and SBLCL; see Table 2

for definitions of predictors) into a composite index

(Thompson et al. 2002; T03).

Here, we verify the model’s ability to reproduce the

results obtained in these proximity-sounding studies by

directly sampling the magnitude of low-level rotation

produced within supercells (using RVORT1) and re-

lating it to the storm’s environment. To do so, the en-

vironments of all simulated storm objects were

extracted at each forecast hour, as described in section

2c, which resulted in a collection of ;192 000 storm-

environment pairs over the 92-day forecast period from

the 10-member CAM ensemble. The list of environ-

mental fields sampled from the model is provided in

Table 2. The choice of environmental parameters was

guided by preexisting parameters whose discrimination

potential has already been proven in previous work

(e.g., STP). For the analyses in section 3b, we explore

exclusively the environments of simulated supercells,3

defined as the subset of the ;192 000 storm objects

containing UH25 . 75m2 s22 based on the threshold

used in Sobash et al. (2016). This resulted in a set of

;63 000 simulated supercell objects.

1) THERMODYNAMIC ENVIRONMENTS

The thermodynamic environments of the ;63 000

simulated supercells were examined in aggregate

across three distributions: those possessing 1) weak

values of RVORT1 (,0.005 s21), 2) moderate values of

RVORT1 ($0.005 s21, but ,0.015 s21), and 3) strong

values of RVORT1 ($0.015 s21). These thresholds

were chosen in order to correspond with the three

categories in T03 (nontornadic, weakly tornadic, and

significantly tornadic).

Overall, supercells possessing strong values ofRVORT1

tended to occur in thermodynamic environments with

lower SBLCLs, smaller SBCIN, and slightly larger

SBCAPE than storms with smaller values of RVORT1.

For example, storms with RVORT1, 0.005 s21 occurred

within environments characterized by a broad range of

SBLCL magnitudes, with a mean SBLCL of ;894m

(Fig. 5). As RVORT1 increased, the range of SBLCL

values decreased; supercells with RVORT1 . 0.015 s21

had a mean SBLCL of ;479m, with a much smaller

interquartile range (;436m) than supercells possessing

weak RVORT1 (interquartile range ;1012m) (Fig. 5).

The dependence of low-level rotation intensity on SBLCL

has been documented in other studies using proxim-

ity soundings (e.g., Rasmussen and Blanchard 1998; T03)

and supports in situ observations of warmer downdrafts

within tornadic supercells due to increased boundary layer

relative humidity (Markowski et al. 2002).

The RVORT1 magnitude also exhibited sensitivity to

the amount of environmental instability (Fig. 6). Supercells

with stronger low-level rotation tended to have largermean

values of SBCAPE (;1024Jkg21 for storms with weak

RVORT1 and ;2070Jkg21 for storms with strong

RVORT1).Yet, therewas considerable overlap among the

three SBCAPE distributions (Fig. 6a). T03 noted a similar

result using MLCAPE, with a large overlap between

MLCAPE distributions in significantly tornadic and non-

tornadic supercells (e.g., their Fig. 6). While the mean

SBCIN for supercells with weakRVORT1 is similar across

all three distributions (roughly 25Jkg21), the range of en-

vironments supporting strong RVORT1 is much narrower

(Fig. 6b). For example, the 10th percentile for supercells

with weakRVORT1 is;155Jkg21, but for supercells with

strong RVORT1 it is ;85Jkg21, suggesting supercells

with strong RVORT1 rarely occur in environments

with SBCIN. 85Jkg21. It is likely that the supercells with

weak RVORT1 and large values of SBCIN are elevated,

preventing appreciable low-level rotation fromdeveloping.

2) KINEMATIC ENVIRONMENTS

The strength of RVORT1 does not appear to be

sensitive to deep-layer shear magnitude (SHR06), but is

3While referred to as ‘‘simulated supercells,’’ the storm

mode of each object studied in section 3b was not identified.

UH25 . 75 m2 s22 can occur within other convective modes

(e.g., intense squall lines).
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sensitive to the low-level shear (SHR01; Fig. 7a). For

example, the mean values of SHR06 range between

;21 and 24m s21 among the three distributions, which

are nearly identical to the mean SHR06 values ob-

tained by T03 in their three groups of supercells. On the

other hand, SHR01 discriminated well between the

weak and strong RVORT1 supercell distributions

(Fig. 7a), with little overlap of the weak and strong

distributions’ interquartile ranges. Furthermore, the

mean values for each distribution of SHR01 are very

similar to those identified in T03. In addition to SHR01,

SRHEL01 and SRHEL03 discriminate well between

supercells with weak and strong RVORT1 (Fig. 7b). A

substantial portion (;75%) of the increase in the mean

SRHEL03 values between the weak RVORT1 and

strong RVORT1 distributions occurs in the 0–1 km

AGL layer, as was also the case in Rasmussen (2003)

and T03 (Fig. 7b).

3) COMBINED PARAMETER FIELDS AND STP

Based on their ability to discriminate between non-

tornadic and significantly tornadic supercells in T03,

SHR01 and SBLCL have been combined, along with

SHR06 and SBCAPE, into composite indices such as

the STP (T03). While the range of STP values among

the supercells with strong RVORT1 is generally

smaller here than in T03 (Fig. 8), which is likely due

to differences in the specific STP formulation, STP

remains an effective discriminator between supercells

that produce weak and strong low-level rotation in the

present dataset (Fig. 8).

In addition to STP, the discriminatory ability of a

combination of SHR01 and SBLCL fields can be fur-

ther illustrated by looking at the SHR01–SBLCL pa-

rameter space for supercells with weak versus strong

magnitudes of RVORT1, as has been done in Craven

and Brooks (2004) and Brooks (2006) (Fig. 9). For the

supercells (i.e., simulated storms with UH25 . 75m2 s22;

see Figs. 9a,b), those with weak low-level rotation occur

across a wide range of the parameter space (Fig. 9a), while

those with strong low-level rotation (Fig. 9b) occur only

where SBLCLs are low (,;1000m AGL) and SHR01

magnitudes are relatively large (.;10m s21). Many of

the storms in the overlap region of these two distri-

butions (Figs. 9a,b), that is, those storms that possess

weak low-level rotation, but occur in environments

conducive to strong low-level rotation, occur in envi-

ronments with large SBCIN, suggesting they are ele-

vated supercells (e.g., those occurring overnight) or

could be associated with convective modes other than

supercells (not shown).

The overlap in the two distributions is reduced further

when considering only intense supercells (UH25 .
150m2 s22; Figs. 9c,d). The intense supercells with weak

FIG. 5. Boxplots ofmean SBLCL (mAGL) for the set ofUH25 objects withUH25. 75m2 s22

(;63 000 objects) stratified by RVORT1 magnitude (weak, RVORT1, 0.005 s21; moderate,

RVORT1 between 0.005 and 0.015 s21; strong, RVORT1 . 0.015 s21). Magnitudes for the

25th, 50th (median), and 75th percentiles are shown in the boxplots, and whiskers extend to

the 10th and 90th percentiles.
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low-level rotation occupy the parameter space of ‘‘high

based’’ environments with small SHR01 magnitudes

(,;10ms21) and large SBLCLs (.;1000m AGL;

Fig. 9c), while those with strong low-level rotation occur

in environments nearly identical to the distribution in

Fig. 9b, that is, environments with large SHR01 and low

SBLCLs (Figs. 9b and 9d are similar since most storms

with strong low-level rotation have UH25magnitudes.
150m2 s22; see Fig. 4a). The distribution of the storms in

Figs. 9c,d within the SHR01–SBLCL parameter space is

strikingly similar to that found with proximity soundings

in Brooks (2006), with a similar separation between the

two groups using a linear discriminant analysis (Fig. 10).

LCLs are smaller in Fig. 10a likely because of the use of

MLLCL in Brooks (2006) instead of SBLCL in the

present work. Again, themodel appears broadly capable

of reproducing the relationships deduced from obser-

vational studies of tornadic storms.

Figure 9 also illustrates a key reason for the inability of

UH25 to act as an effective surrogate for tornadoes.

Identifying potentially tornadic storms based on UH25

alone, even when choosing a higher threshold such as

UH25 . 150m2 s22, will inevitably include a fraction of

storms occurring within environments hostile to torna-

dogenesis (e.g., the set of storms in Fig. 9c when using

UH25. 150m2 s22). On the other hand, the identification

of storms within the favorable part of the parameter space

for tornadoes (i.e., low LCLs and large SHR01) can be

FIG. 6. As in Fig. 5, but for (a) mean SBCAPE (J kg21) and (b) mean SBCIN (J kg21).
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identified using RVORT1, without the use of UH25 or

supplementary environmental parameters.

c. Behavior of UH25 and UH03 within simulated
storms

In this section, we further examine how the midlevel

(UH25) and low-level rotation (UH03 and RVORT1)

diagnostics are related within simulated convective

storms. For this, we return to using all storm objects

(UH25 . 25m2 s22), without limiting the analysis to a

particular subset. We pay particular attention to the

characteristics of storms that possess large UH03 and

RVORT1 magnitudes, without the presence of appre-

ciable midlevel rotation (i.e., UH25 , 75m2 s22). Many

FIG. 7. As in Fig. 5, but for (a) mean SHR01 (m s21) and SHR06 (m s21) and (b) mean

SRHEL01 (m2 s22) and SRHEL03 (m2 s22).
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of these storms possess UH03 . UH25 (Fig. 4c), which

implies that low-level rotation is particularly strong,

relative to midlevel rotation (assuming that vertical ve-

locity, the other component in the UH computation, is

greater aloft than near the surface, which alone would

result in UH25 . UH03).

To do so, the UH ratio within each simulated storm

was computed as

UHratio5UH03/UH25,

using the maximum UH25 and UH03 magnitude within

each object. This metric allows for an evaluation of how

midlevel and low-level rotation is related within each

storm at any given time. Overall, a majority of storms

possess UH ratios between 0.3 and 0.7, with a maximum

in the number of storms near 0.5 (Fig. 11), agreeing with

the relationship identified between UH25 and UH03 in

the grid-scale climatology (Fig. 3). For the vast majority

of storms, those with UH ratios closer to 1 tend to pos-

sess larger RVORT1 magnitudes. Two sets of storms

exist that deviate from this relationship, especially for

large magnitudes of RVORT1 (.0.015 s21) and large

UH ratios (.1). Although the overall number of storms

is small within these parts of the parameter space, we are

interested in examining these two subsets of storms,

specifically 1) storms with RVORT1 . 0.015 s21, which

were identified in the section 3c, and 2) storms with UH

ratios greater than 1, where UH03 exceeds UH25.

For storms with RVORT1 magnitudes . 0.015 s21,

theUH ratios are often between 0.6 and 1.0, with amean

of;0.8 (Fig. 11). Very few storms in this regime possess

UH ratios greater than 1, indicating that UH03 rarely

exceeds UH25 in simulated storms that possess

RVORT1. 0.015 s21. Further, the UH ratio appears to

be largely independent of RVORT1 magnitude for

storms in this regime, suggesting UH25 increases line-

arly with UH03 among these storms, such that increased

midlevel rotation is associated with a corresponding

increase in the strength of the low-level rotation. These

UH25 and UH03 magnitudes for these storms are large,

well above the UH thresholds typically used to identify

supercells (Fig. 12).

For storms with UH ratios . 1, intense low-level ro-

tation (i.e., RVORT1 . 0.015 s21) rarely occurs

(Fig. 11). RVORT1 ranges from ;0.005 to ;0.015 s21

within this subset of storms, with the range centered

around 0.01 s21. The UH25 and UH03 magnitudes for

these storms are quite small, with most storms possess-

ing UH25 magnitudes smaller than 75m2 s22 (Fig. 12).

The behavior of these storms is distinct from the be-

havior of the storms with strong low-level rotation in

subset 1. Among the storms in subset 2, those with larger

UH ratios, the average RVORT1 magnitude stays rel-

atively constant, near 0.01 s21. Since RVORT1 is

strongly correlated with UH03, this suggests that within

this subset, those storms with larger UH ratios are pri-

marily due to a relative decrease in the magnitude of

UH25 (rather than a large increase in the magnitude of

UH03, while UH25 stays constant).

The environments of the storms in subsets 1 and 2 have

different distributions of CAPE and SBLCL. The mean

FIG. 8. As in Fig. 5, but for mean fixed-layer STP.
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SBCAPEamong storms in subset 1 is;1600Jkg21 larger

than those in subset 2, with little overlap between the two

distributions (Fig. 13). These differences are also present

for MLCAPE and MUCAPE (not shown). A smaller

difference is present for SBLCL, with the mean SBLCL

;150m less in the environments for the subset 2 storms

(not shown). Among the kinematic variables (e.g.,

SHR01, SHR06, and SRHEL01), little differences are

noted in the two distributions, suggesting that both subset

1 and 2 storms occur in environments of strong low-level

and deep-layer shear (not shown). Finally, the storm

objects in subset 1 tend to be much larger in size than

those in subset 2 (Fig. 14).

The storms in subset 1 possess the traits of ‘‘bona

fide’’ simulated supercells, that is, storms containing

large magnitudes of UH25 and UH03, large values of

environmental instability, and large object areas. On

the contrary, those in subset 2 have weak magnitudes

of UH25 and UH03, are less persistent (leading to

smaller object areas), and occur in environments of

relatively weak environmental instability. Yet, those

storms in subset 2 are still capable of producing

FIG. 9. As in Fig. 4, but for the joint distribution of SHR01–SBLCL for (top) all supercells, defined as UH25.
75 m2 s22, and (bottom) intense supercells, defined as UH25. 150m2 s22. Those storms are further stratified by

(a),(c) weak low-level rotation, defined as RVORT1, 0.005 s21, and (b),(d) strong low-level rotation, defined as

RVORT1 . 0.015 s21.
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nonnegligible amounts of low-level rotation (often

greater than 0.01 s21; Fig. 11). While the simulated

storms in subset 2 do not appear to be traditional su-

percells (i.e., those with UH25. 75m2 s22), they share

traits of severe storms that occur in low-CAPE/high-shear

environments, or with shallow supercells that are more

poorly resolved than those in subset 2 because of their

smaller size.

FIG. 10. (a) Scatterplot of UH25 objects from Figs. 11c and 11d (i.e., intense supercells with

maximum UH25. 150m2 s22) color coded by magnitude of low-level rotation (red, RVORT1.
0.015 s21; blue, RVORT1, 0.005 s21). Best linear discriminator is plotted as a black line. (b) As in

(a), but for SHR01–MLLCL values from observed proximity soundings (from 1972 to 1999) asso-

ciated with observed tornadic (red) and nontornadic (blue) storms [Adapted from Brooks (2006).]
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d. Next-day tornado forecasts using low-level rotation
surrogates

So far, the results have provided confidence that low-

level rotation is produced in simulated supercells that

occur in environments similar to those conducive for ob-

served tornadoes. These results motivate the development

of next-day tornado guidance that uses low-level rotation

diagnostics as surrogates for tornadoes without the need

for environmental filtering. Such forecasts should be

capable of providing an indication of the potential for

tornadoes and should be more skillful than using UH25

alone. To test these hypotheses, next-day probabilistic

forecasts of tornadoes are generated and verified fol-

lowing the approach outlined in section 2d. As de-

scribed in section 2d, this method uses the diagnostic

fields on the native model grid and not the storm ob-

jects used in sections 3b and 3c.

As in Sobash et al. (2016), E-SSPFs are generated

over a range of thresholds that produce a number of

SSRs over the 92-day period that is similar to the num-

ber of observed storm reports, after being mapped to

the 80-km forecast grid (Table 3). This ensures that the

number of forecast tornado ‘‘hits’’ is similar to the

number of observed tornado ‘‘hits,’’ reducing the effects

of forecast bias when using scores such as the FSS

(Mittermaier and Roberts 2010). During the 92-day

forecast period, 285 grid points were flagged where a

tornado report occurred at some point within the 24-h

period of interest (i.e., 285 OSRs). For UH25, UH03,

and RVORT1, thresholds of approximately 200m2 s22,

120m2 s22, and 1.17 3 1022 s21 produced SSR biases

closest to 1.0, respectively (Table 3).

E-SSPFs for two cases are presented here to dem-

onstrate the potential advantages of using UH03 and

RVORT1 as surrogates for tornadoes. The first case,

16 May 2015, includes a large tornado outbreak across

FIG. 11. As in Fig. 4, but for UH ratio (UH03/UH25) and

RVORT1. Black lines denote thresholds used to stratify storms (UH

ratio . 1 and RVORT1 . 0.015 s21) in text and Figs. 12–14.

FIG. 12. As in Fig. 5, but for both the UH25 and UH03 distributions within storms that

possess (left) RVORT1 . 0.015 s21 and (right) UH ratio . 1 (indicated by black lines in

Fig. 11). Sample size for each distribution is provided along the x axis.
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the central United States, with 25 OSRs occurring

within the United States, the largest 1-day total during

the 92-day period. The E-SSPFs for this day created

using the UH25, UH03, and RVORT1 thresholds

where the bias is closest to one are shown in Fig. 15. On

this day, the UH25 E-SSPF produced the lowest

probabilities, since a relatively small number of storms

exceeded the high UH25 threshold (Fig. 15a). Both the

UH03 (Fig. 15b) and RVORT1 E-SSPFs (Fig. 15c)

produced higher probabilities, closer to the values

produced in the smoothed OSR field (Fig. 15d). The

spatial patterns of the three E-SSPFs are similar across

Kansas and Oklahoma, although the maximum prob-

abilities were positioned in different regions (cf.

Figs. 15b,c). In Minnesota, the RVORT1 E-SSPF has

the highest probabilities where a cluster of tornadoes

were reported, while UH03 E-SSPF probabilities are

reduced, and are close to zero for the UH25 E-SSPFs.

FIG. 13. As in Fig. 12, but for SBCAPE (J kg21).

FIG. 14. As in Fig. 12, but for object size (number of grid points).
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Inspection of the forecast storms inMinnesota revealed

that these storms were shallow, with rotation restricted

to the lowest levels, hence, the improved E-SSPFs

for these storms using low-level rotation surrogates.

Also, a probability maximum exists in the UH25

E-SSPF in SW Texas, but does not in the RVORT1

E-SSPF. Several ensemble members correctly fore-

casted the development of isolated, intense, high-

based, supercells in this region, but no tornadoes

were observed. This is a scenario where appreciable

low-level rotation did not develop, reducing probabil-

ities in the RVORT1 E-SSPF.

The second case was a primarily nontornadic event

that occurred across the high plains of Montana,

Wyoming, and South Dakota (Fig. 16). Similar to fore-

casts of high-based intense supercells in the previous

case, the storms on this day were high based and mainly

produced severe wind gusts and large hail (only one

tornado report in this region; Fig. 16d). The use of the

RVORT1 surrogate (Fig. 16c) reduced the magnitudes

of the E-SSPF probabilities over the UH25 (Fig. 16a)

and UH03 E-SSPFs (Fig. 16b), improving the E-SSPFs.

The three surrogate fields were not useful in identi-

fying tornadic convection across southern Illinois and

Indiana, even though convection was predicted in this

area. The storms in southern Illinois were similar to the

subset 2 storms discussed in section 3d and did not ex-

ceed the thresholds used for the surrogate fields.

For UH25 E-SSPFs, FSS values $ 0.5 (the FSS

threshold indicating a skillful forecast) only occur when

using the largest UH25 thresholds, where the forecast

bias is closest to 1 (Fig. 17a). Even so, the FSS values here

barely exceed 0.5 and only occur at the largest smoothing

length scales (i.e., s . 180km), with a maximum FSS

over all UH25 thresholds of 0.521 at s 5 200km. At

s5 200km, theE-SSPFs suffer from very poor resolution

since large probability values (e.g., .25%) are rarely

produced (Fig. 19b). Compared with the UH25 E-SSPFs,

the UH03 and RVORT1 E-SSPFs produce FSS $ 0.5

at smaller smoothing length scales (i.e., s $ 120km),

with a maximum FSS approaching 0.64 at s 5 200km

(Figs. 17b,c). Compared to the UH25 E-SSPFs, UH03

E-SSPFs produced larger FSS values at smaller smooth-

ing length scales for SSR thresholds with a forecast bias

closest to 1. RVORT1 E-SSPFs produced similar FSSs to

the UH03 E-SSPFs, with a small increase in FSS noted at

thresholdswhere the surrogate bias is closest to 1, although

the FSS differences between the UH03 E-SSPFs and

FIG. 15. The 24-h E-SSPFs for tornadoes valid 1200 UTC 16 May–1200 UTC 17 May 2015 produced from the

NCAR ensemble forecast initialized at 0000 UTC 16May 2015 for (a) UH25. 200m2 s22, (b) UH03. 120m2 s22,

and (c) RVORT1 . 0.0117 s21 with a Gaussian smoother (s 5 120 km). (d) Tornado OSPF, smoothed with

a Gaussian smoother (s 5 120 km). The E-SSPFs shown here use the SSR thresholds that produce SSR biases

closest to 1 (Table 3).
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RVORT1 E-SSPFs are not statistically significant at

these thresholds, using a bootstrap resampling between

FSS differences, as in Sobash et al. (2016). In addition to

the FSS gains for UH03 and RVORT1 E-SSPFs, receiver

operating characteristic (ROC) areas for these forecasts

were larger than the UH25 E-SSPFs at all smoothing

length scales (Fig. 18).

It is worth noting that for all E-SSPFs, FSSs increase

when the surrogate threshold is chosen to be slightly

lower than the threshold that produces an SSR bias

closest to 1 (Fig. 17). This result implies that over-

forecasting the number of SSRs (i.e., an SSR bias . 1)

has a positive impact on forecast skill. This behavior

appears to occur up to SSRbiases of;1.5 (Table 3), with

FSS values decreasing for biases larger than 1.5. Given

the small overall number of SSRs for these thresholds

(generally 200–400 for biases between 1 and 1.5), the

number of unique storms identified is likely very sensi-

tive to the SSR threshold. Because of the small number

of SSRs, a slight decrease in the UH25, UH03, or

RVORT1 threshold could lead to small improvements

in FSS by producing probabilities in new areas that were

not identified using a higher threshold. This effect was

not observed in Sobash et al. (2016), likely because of a

larger overall number of SSRs and, thus, less sensitivity

to small changes in threshold (their work used all severe

reports rather than just tornado reports, resulting in a

much larger number of SSRs).

In addition to gains in FSS and ROC area, the re-

liability of the E-SSPFs, shown in Fig. 19a for E-SSPFs

using the bias 5 1 SSR thresholds (Table 3) and

s 5 120 km, also improves. These differences in re-

liability are most certain for probabilities, 20%, where

sample sizes are generally larger than 100 (Fig. 19b). For

these forecasts, RVORT1 E-SSPFs produce fairly reli-

able probabilities, while the UH25 E-SSPFs suffer from

overforecasting and hover near the ‘‘no skill’’ line. For

E-SSPF probabilities . 20%, the results are noisier,

reducing confidence in the reliability results in this

range, although there is some suggestion of improve-

ment in reliability for theUH03 andRVORT1E-SSPFs.

For reference, the reliability of E-SSPFs created using

UH25 . 75m2 s22, the traditional threshold for identi-

fying supercells in the present forecast dataset, is pro-

vided in Fig. 19a. These forecasts are substantially

overconfident and produce small FSSs.

The lack of sharpness in the present set of E-SSPFs is

not ideal, but may not be a significant issue, since op-

erational probabilistic forecasts of tornadoes (e.g., SPC

probabilistic outlooks) also do not issue probabilities .
30%. While the filtered UH25 forecasts produced in

Gallo et al. (2016) did produce probabilities up to 80%

FIG. 16. As in Fig. 15, but for E-SSPFs valid 1200 UTC 19 Jun–1200 UTC 20 Jun 2015 from the ensemble forecast

initialized at 0000 UTC 19 Jun 2015.
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FIG. 17. FSSs for 24-h E-SSPFs (valid 1200–1200 UTC) over the 92-day forecast period (using forecasts

initialized daily from 0000 UTC 30 Apr through 0000 UTC 30 Jul 2015) as a function of SSR threshold and

smoothing length scale for (a) UH25, (b) UH03, and (c) RVORT1. Boldface boxes indicate the E-SSPFs

that use the SSR thresholds that produce SSR biases closest to 1 (Table 3).
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(although with very small sample sizes), the calibrated

probabilities of Jirak et al. (2014) did not exceed 40%,

similar to this work. An additional season or two of data

should reveal more about the ability of the forecast

system to produce sharper E-SSPFs for tornadoes.

4. Summary and discussion

The goal of this work was to gauge the ability of

CAMs, run with 3-km horizontal grid spacing and ini-

tialized at 0000 UTC, to provide useful information

concerning the next-day (i.e., forecast hours 12–36)

threat for tornadoes by directly sampling the CAM’s

forecasts of low-level rotation within intense convec-

tion. To do so, two diagnostic fields related to low-level

rotation, 0–3 kmAGL updraft helicity (UH03) and 1km

AGL relative vorticity (RVORT1), were extracted from

CAM output in a manner analogous to other diagnostic

fields designed to detect instances of convective ex-

tremes in CAMs (e.g., Kain et al. 2010). Using the CAM

predictions of low-level rotation differs from prior work

that relied on CAM predictions ofmidlevel rotation and

environmental parameters (e.g., STP) to create tornado

forecast guidance (e.g., Clark et al. 2012; Jirak et al.

2014; Gallo et al. 2016).

The potential for UH03 and RVORT1 to act as sur-

rogates for tornadoes, without the need for additional

environmental information, was established by directly

examining the near-storm environments in which super-

cells (i.e., defined as storm objects with object-maximum

UH25 . 75m2 s22) with appreciable low-level rotation

developed. The forecasts were quite capable of producing

large RVORT1 and UH03 magnitudes associated with

supercells occurring within environments of large SHR01

and SRHEL01, as well as low SBLCLs. The aggregate

environmental statistics of storms with weak versus

strong low-level rotation presented here generally re-

produced the differences in environments of tornadic

and nontornadic supercells deduced in studies using

observed or model-based proximity soundings (e.g.,

Rasmussen and Blanchard 1998; Brooks 2006). The

STP was also a successful discriminator between sim-

ulated supercells with weak and strong low-level rota-

tion, just as was observed in T03 for observed tornadic

versus nontornadic storms.

While UH03magnitudes were typically around half as

large as UH25 magnitudes, the UH ratio (UH03/UH25)

was used to isolate storms that deviated from this cli-

matology. Supercells with the strongest low-level rota-

tion (RVORT1 . 0.015 s21) possessed UH ratios

between 0.6 and 1.0, but rarely exceeded 1 (i.e., UH03

rarely exceeded UH25). Among these storms, UH25

and UH03 magnitudes often exceeded 150m2 s22, and

occurred within environments of strong instability

(mean SBCAPE. 2000 J kg21) and large magnitudes of

shear. Those storms that did possess UH ratios . 1 had

UH25 and UH03 magnitudes below 75m2 s22, yet they

often producedmoderate to strong amounts of low-level

rotation (RVORT1 . 0.01 s21). These storms occurred

in environments of weak instability (mean SBCAPE ,
500 J kg21), but with shear magnitudes similar to the

environments of the traditional supercells containing

FIG. 18. AUC curves for UH25 E-SSPFs (black), UH03 E-SSPFs (green), and RVORT1

E-SSPFs (blue), as a function of smoothing length scale s (km). The E-SSPFs shown here use

the SSR thresholds that produce SSR biases closest to 1 (Table 3).
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the strongest low-level rotation. The objects composing

the storms with UH ratios. 1 were also smaller in size,

suggesting the features were not persistent and likely

were poorly resolved. Given the likelihood that these

storms are overlooked by methods that use fixed UH25

thresholds to identify supercells (e.g., Sobash et al.

2011), future work should examine storms within the

high-shear/low-CAPE/low-UH25 parameter space to

determine if they are an important part of the next-day

tornado prediction problem, and the potential usage of

UH03 as a better diagnostic to identify these storms

compared to UH25.

Finally, probabilistic tornado forecasts (E-SSPFs)

were produced using the low-level rotation diagnostics

as surrogates for tornadoes. A set of surrogate thresh-

olds was computed using the methodology outlined in

Sobash et al. (2016) by comparing SSRs to the number of

observed tornado reports. Tornado E-SSPFs produced

using UH03 and RVORT1 possessed higher FSSs,

larger ROC areas, and were more reliable than E-SSPFs

using UH25. The limited sample size of E-SSPFs above

20%, due in part to the smoothing necessary to produce

large FSSs, precludes a definitive statement on the re-

liability of these forecasts until a larger sample of fore-

casts is produced.

The FSSs at which the tornado E-SSPFs were skillful

were restricted to the largest scales examined (s $

160 km), suggesting that CAMs have little to no skill at

anticipating tornadoes on smaller scales, or that the low-

level rotation surrogates are inherently less skillful than,

say, those usingUH25 as a surrogate to predict all severe

weather hazards (e.g., Sobash et al. 2016), resulting in a

need for additional smoothing to improve reliability.

From a practical perspective, given the similar E-SSPF

skill using both UH03 and RVORT1, it does not appear

that the inclusion of the RVORT1 diagnostic in model

output should be preferred over UH03, at least in

models with similar horizontal grid spacing (i.e., 3 km).

FIG. 19. (a)Attributes diagram forE-SSPFs for tornadoes usings5 120km forUH25. 75m2 s22

(gray), UH25 . 200m2 s22 (black), UH03 . 121m2 s22 (green), and RVORT1 . 0.017 s21

(blue). (b) Counts of forecasts per bin. Other than the E-SSPF using UH25 . 75m2 s22, the

E-SSPFs shown here use the SSR thresholds that produce SSR biases closest to 1 (Table 3).
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We hope this work spurs several important areas of

research. First, the low-level rotation diagnostics should

be embedded within CAMs run with finer grid spacing

than 3km (e.g., 1km) to compare with the present set of

results. It is hypothesized that higher resolution will be

needed to resolve near-surface rotation associated with

mesovortices in systems such as QLCSs and may also

improve the ability of the surrogates to anticipate tornado

occurrence in traditional supercells. Second, the E-SSPFs

need to be verified against radar-derived verification

datasets, such as multiradar multisensor (MRMS) rota-

tion tracks (Zhang et al. 2016), in addition to observed

tornado reports. Using radar-derived rotation tracks

would provide an important ‘‘apples to apples’’ compar-

ison between model-predicted and observed low-level

rotation. This comparison could be used as a baseline to

distinguish between the ability of the forecasts to correctly

place storms in spaceand timeand theabilityof the low-level

rotation diagnostics to be used as surrogates for tornadoes.

Finally, although not examined here, any biases that

exist in the simulated storm environment will inevitably

lead to errors in forecasts of low-level rotation. These

errors also impart limits on the predictability of storm

mode, placement, and timing. Thus, efforts to improve

the representation of the forecast near-storm environ-

ment should translate into gains in skill for E-SSPFs of

tornadoes and all severe weather hazards.
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