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ABSTRACT

Three diagnostic fields were examined to assess their ability to act as surrogates for tornadoes in a convection-
allowing ensemble system run during the spring of 2015. The diagnostics included midlevel (2-5km AGL)
updraft helicity (UH25), low-level (0-3 km AGL) updraft helicity (UHO03), and low-level (1 km AGL) vertical
relative vorticity (RVORT1). RVORT1 was used as a direct measure of low-level rotation strength. Each
storm’s RVORT1 magnitude and near-storm environment properties were extracted from each hour’s forecasts
using an object-based approach. The near-storm environments of storm objects with large magnitudes of
RVORT1 were very similar to the environments identified as conducive for the development of tornadic su-
percells in previous proximity sounding-based studies (e.g., low lifted condensation levels and strong low-level
shear). This motivated the use of RVORT1 as a direct surrogate for tornadoes, without the need to filter
forecasts with environmental information. The relationship between UH25 and UHO3 was also explored among
the simulated storms; UHO3 only exceeded UH25 in storms occurring within low-CAPE/high-shear environ-
ments, while UHO3 rarely exceeded UH25 in traditional supercell environments. Next-day ensemble surrogate
severe probability forecasts (E-SSPFs) for tornadoes were generated using these diagnostics for 92 forecasts,
with thresholds based on the number of observed tornado reports. E-SSPFs for tornadoes using RVORT1 and
UHO03 were more skillful than E-SSPFs using UH25. The UH25 E-SSPFs possessed little skill, regardless of
threshold or smoothing length scale. All E-SSPFs suffered from poor sharpness at skillful scales, with few
forecast probabilities greater than 40%.

1. Introduction produced by these intense, damaging storms (Gallus
et al. 2008). Kain et al. (2008) proposed computing up-
draft helicity (UH), the product of vertical velocity and
vertical vorticity over a specified depth, to identify
midlevel (2-5km AGL) mesocyclones, and thus super-
cells, in CAM output. Later work has successfully used
midlevel UH as a surrogate for the occurrence of severe
weather hazards emanating from supercells [e.g., strong
winds, large hail, and tornadoes; Sobash et al. (2011,
2016); Clark et al. (2013)] and further verified the ability
of midlevel UH to reliably identify supercells in CAM
Corresponding author address: Dr. Ryan A. Sobash, NCAR/ output (e.g., Naylor et al. 2012).
MMM, P.O. Box 3000, Boulder, CO 80307. While this work has demonstrated the usefulness of
E-mail: sobash@ucar.edu midlevel UH as a diagnostic for identifying simulated

Convection-allowing models (CAMs) have permitted
the development of novel forms of forecast guidance
summarizing the potential for severe convective
weather based on their explicit predictions of convective
storms (e.g., Kain et al. 2008; Sobash et al. 2011, 2016;
Clark et al. 2012, 2013). Identifying supercells in CAM
forecasts has garnered particular interest, as a result of
the disproportionate share of severe weather reports
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supercells, discriminating tornadic from nontornadic
events using present-day CAMs presents a more sub-
stantial, and so far unaddressed, challenge. Observa-
tional studies of supercells routinely indicate that the
presence of a midlevel mesocyclone, which midlevel UH
was initially designed to detect, is not a sufficient con-
dition for tornado occurrence (Trapp et al. 1999, 2005;
Wakimoto et al. 2004). In fact, Trapp et al. (2005) esti-
mated that only 15% of storms with midlevel mesocy-
clones produce tornadoes. Assuming modeled storms
possess a similar relationship, then midlevel UH alone is
not an appropriate surrogate for tornado occurrence,
and an additional surrogate that is more closely related
to tornadogenesis is needed. While directly sampling
CAM output for the presence of tornado-like vortices'
would be preferable to relying on surrogates, present-
day CAMs have horizontal grid spacings between 1 and
4km, where only storm-scale circulations, such as me-
socyclones, are close to being resolved. Resolving
tornado-like vortices requires CAMs with grid spacings
well below 1km (e.g., Schenkman et al. 2014), which will
not be available in operational NWP systems for many
years or, possibly, decades.

Despite the obstacles involved with using midlevel UH
as a surrogate for tornado occurrence in CAM output,
several recent studies have presented encouraging results
using midlevel UH to anticipate next-day tornado po-
tential. For example, Clark et al. (2012, 2013) used the
total time- and space-integrated midlevel UH swath
length from a CAM ensemble as a surrogate for observed
tornado track length over a collection of cases in 2011 and
2012. A positive correlation existed between the forecast
and observed tornado track length after removing mid-
level UH tracks that were produced by elevated or high-
based convection, as determined by CAM forecasts of
lifted condensation level (LCL) and convective inhibition
(CIN). While the forecasts examined in Clark et al. (2013)
were for aggregated tornado pathlength on a given day,
Jirak et al. (2014) and Gallo et al. (2016) used forecasts of
midlevel UH, combined with similar environmental in-
formation (e.g., CAPE, LCL, significant tornado pa-
rameter) as in Clark et al. (2013), to produce probabilistic
guidance akin to Storm Prediction Center probabilistic
forecasts that was superior to guidance based strictly on
midlevel UH. These results suggest that CAMs appear

! Here, we use the term tornado-like vortex to describe a near-
surface vortex that occurs in association with a parent thunder-
storm using CAMs run at resolutions that partially, but not fully,
resolve tornado-scale circulations [O(100) m]. The term tornado-
like vortex has also been used in the literature to describe an ide-
alized simulation of a tornado that is not associated with a parent
thunderstorm, regardless of model resolution (e.g., Rotunno 1979).
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capable of providing skillful guidance for the next-day
tornado threat, only when forecasts of midlevel UH are
combined with environmental parameters that skillfully
discriminate tornado-prone environments.

Filtering CAM forecasts of midlevel UH with envi-
ronmental information reduces the overforecasting bias
that plagues guidance solely based on midlevel UH as a
surrogate for tornadoes (Gallo et al. 2016). The choices
of environmental fields to use for filtering are informed
by previous work that used proximity soundings to re-
veal relationships between characteristics of a storm’s
inflow environment and its propensity to produce low-
level rotation and tornadoes (e.g., Brooks et al. 1994;
Rasmussen and Blanchard 1998; Rasmussen 2003;
Thompson et al. 2003, hereafter T03; Thompson et al.
2012). These studies largely omit tornadic storms oc-
curring in nontraditional environments (e.g., low CAPE/
high shear) or tornadoes that develop in quasi-linear
convective systems (QLCSs) or tropical cyclones. For
example, the TO3 dataset excluded tropical cyclone su-
percells from their dataset. Having a surrogate that is
directly related to the process of tornadogenesis would
remove the need for environmental filters that may not
perform equitably across different environments and
storm types.

Toward this end, we have chosen to interrogate
CAMs for low-level (<3km AGL) rotation that can
identify the presence and intensity of low-level meso-
cyclones in simulated supercells. Compared to midlevel
rotation (i.e., 2-5km AGL UH), low-level mesocyclone
strength is more strongly associated with tornado oc-
currence (Trapp et al. 2005) and with tornado intensity
(Smith et al. 2015). Further, field studies have directly
tied the behavior and strength of low-level mesocy-
clones to tornadogenesis (e.g., Markowski et al. 2012;
Skinner et al. 2014). Finally, using low-level rotation as a
surrogate for tornadoes may improve forecasts of tor-
nadoes occurring in storms where midlevel rotation
(>3km AGL), and thus midlevel UH, is reduced, for
example, mesovortices in QLCSs (e.g., Trapp and
Weisman 2003) and shallow mesocyclones in miniature
supercells associated with landfalling tropical cyclones
(e.g., McCaul 1991; McCaul and Weisman 1996; Eastin
and Link 2009; Edwards et al. 2012).

However, a prerequisite step to using explicit fore-
casts of low-level rotation as a surrogate for tornadoes is
to verify the model’s ability to produce low-level rota-
tion within environments that are favorable for torna-
does in observed supercells. In other words, an
additional goal of this work is to confirm the model can
mimic results obtained by proximity sounding studies
(e.g., TO3). If the magnitude of low-level rotation in
simulated storms depends on similar parameters to
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those identified in TO3 and other proximity-sounding
based studies, it would inspire confidence that the model
is capable of producing low-level rotation for the right
reasons [e.g., as a result of interaction of the storm’s
updraft with environment- and storm-generated vortic-
ity; Markowski et al. (2012)]. Additionally, it would lend
support to the use of explicit forecasts of low-level ro-
tation as a surrogate for tornadoes without the need to
filter based on environmental parameters.

In some sense, this goal is similar to the goals of the
pioneering work with cloud-scale models that examined
the parameter space of environmental conditions con-
trolling convective mode and behavior (e.g., Weisman and
Klemp 1982, 1984), with a focus here on the development
of low-level rotation in simulated storms. Low-level ro-
tation has been explored as a surrogate for tornadoes in
recent storm-scale data assimilation studies in a small
collection of cases (e.g., Stensrud et al. 2009; Dawson et al.
2012; Yussouf et al. 2015; Wheatley et al. 2015). Yet, it
remains unclear whether present-day CAMs with hori-
zontal grid spacings near 3 km are capable of reproducing
intense low-level rotation across a broader spectrum of
environments that support tornadoes.

To investigate the relationship between model envi-
ronment and low-level rotation, we use a collection of
ensemble forecasts from a 3-km horizontal grid-spacing
CAM ensemble run during spring 2015 (Schwartz et al.
2015). From this dataset, we extract three surrogate
fields related to rotation within simulated convective
storms, two of which are directly related to low-level
(<3km AGL) rotation that have not previously been
used as surrogate fields in next-day CAM forecasts. The
first, 2-5km AGL UH (UH25), is the traditional UH
diagnostic introduced by Kain et al. (2008) and exam-
ined in Clark et al. (2013) and Gallo et al. (2016). The
second, 0-3km AGL UH (UHO03), is the same as UH25,
except UH is calculated using fields between the surface
and 3km AGL. The third, 1km AGL relative vertical
vorticity (RVORT1), is used as a measure of the rota-
tion at a fixed level AGL, rather than over an integrated
depth as in UH25 and UHO3.

In section 2, details of the ensemble forecasts and
forecast guidance generation procedure are presented,
followed by an examination of the model low-level ro-
tation climatology in section 3. Section 3 also examines
the environments in which intense low-level rotation
occurs in the forecasts compared to results previously
identified as conducive for tornadic supercells in prox-
imity soundings (e.g., T03). Based on these results, next-
day forecast guidance for tornadoes using the low-level
rotation surrogates is presented and verified in the final
subsection of section 3. A summary and discussion of the
findings are presented in section 4.
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FIG. 1. Nested forecast domains for the 2015 NCAR real-time
ensemble system. Verification of E-SSPFs is performed only over
the speckled region. [Adapted from Schwartz et al. (2015).]

2. Methodology
a. Ensemble forecasts

Ensemble forecasts were generated from a continu-
ously cycled ensemble Kalman filter (EnKF) based en-
semble system currently run in real time at NCAR using
the Advanced Research version of the Weather Re-
search and Forecasting Model (WRF; Skamarock et al.
2008) and the Data Assimilation Research Testbed
(DART; Anderson et al. 2009). The cycled system
produces a set of 50 analyses at 15-km horizontal grid
spacing every 6 h by assimilating a variety of surface and
upper-air observations using the ensemble adjustment
Kalman filter (Anderson 2001, 2003) within DART and
integrating the forecasts to the next assimilation time
with WRF. Following the assimilation step at 0000 UTC,
the first 10 members from the set of 50 analyses from
0000 UTC are downscaled to 3km over a continental
United States (CONUS)-spanning domain (Fig. 1) and
integrated to 48 h using WRF. Further details about the
analysis and ensemble forecast system are found in
Schwartz et al. (2015). Here, we use the set of 92 ten-
member ensemble forecasts initialized daily at 0000 UTC
from 30 April through 30 July 2015. Although this is a
larger collection of forecasts relative to other studies (e.g.,
Schwartz et al. 2015), because of the rarity of tornado
events this remains a fairly small sample, and the results
are only valid over the warm season.

b. Rotation diagnostics

The UH2S5, UHO03, and RVORT1 diagnostics were
implemented in WRF as “hourly maximum” fields
(Kain et al. 2010). These fields track the maximum value
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TABLE 1. List of settings for the enhanced watershed algorithm, defined using the terminology in Lakshmanan et al. (2009). The saliency
size was chosen to identify longer, more coherent, UH25 swaths, while reducing the number of smaller, transient, UH25 features (smaller

saliency thresholds resulted in long UH2S5 swaths being broken into multiple objects). No smoothing was applied to the UH25 field during

the object-finding process, as a nine-point average is applied each time step when computing the UH2S5 field in the WRF Model.

Field Min (a) Max (b)

Increment (5)

Saliency (km?) Smoothing

UH25 25m?s ™2 250m?s ™2

5m?s™2 900 None

of the diagnostic at each grid point that occurs at any
time step within each hour of the forecast. As in Kain
et al. (2008), UH25 was computed as

Skm

UH25= ) widz,

2km

where w is the vertical velocity and ¢ is the vertical
vorticity at a grid point. The value of UHO03 was com-
puted in an analogous manner, with the integration oc-
curring between 0 and 3km AGL. Finally, RVORT1
was computed using vertical vorticity computed as
dv/dx — du/dy, where u and v are the zonal and merid-
ional wind components, respectively.

c. Storm object and environment identification

Storm objects and their environments were extracted
from the ensemble forecasts valid between 1200 and
1200 UTC the following day (i.e., forecast hours 12-36).
The enhanced watershed algorithm (Lakshmanan et al.
2009; Lakshmanan 2012), as implemented in the ha-
gelslag processing package (Gagne et al. 2016), was used
to identify objects in the model output. The watershed
algorithm, as applied here, takes a two-dimensional
model field and identifies maxima to begin the object-
finding process. The objects initiated at these maxima
grow until the saliency is reached (Table 1) or points are

encountered that are associated with other objects.
While object size is partially controlled by the saliency
parameter, an additional minimum size criterion is also
applied to remove objects smaller than 90km? [to re-
move objects smaller than the effective resolution of the
model, as in Davis et al. (2006) and Johnson et al.
(2011)]. The benefit of using the watershed object-
finding algorithm is that it does not depend on a pre-
defined threshold above which objects are created; here,
regions are grown beginning at field maxima. The reader
is encouraged to consult Lakshmanan et al. (2009) for
full details of the enhanced watershed algorithm.

For this work, objects were identified using the UH25
field, with the minimum UH25 threshold set to 25m*s ™.
Other watershed algorithm settings are provided in
Table 1. We chose UH2S5 to identify objects since the
present work focuses on the behavior of low-level and
midlevel rotation within storms possessing some degree
of midlevel rotation; other fields used as input into the
object identification algorithm to identify storm objects
(e.g., hourly maximum vertically integrated graupel)
produced similar results. The watershed algorithm, as
used in this work, does not identify storms per se, but
rather the associated hourly maximum UH25 swaths.

Storm and environmental variables were extracted
from the forecasts at the collection of points composing
each object (Table 2). The storm variables were

TABLE 2. List of storm and environmental properties extracted from the ensemble forecasts using the enhanced watershed object-
finding algorithm. For the storm properties, the maximum value within each object is extracted, while for the environmental properties,

the mean value within each object is extracted.

Storm or

Field Name environment
UH25 Hourly max updraft helicity within the 2-5km AGL layer Storm
UHO03 Hourly max updraft helicity within the 0-3 km AGL layer Storm
RVORT1 Hourly max 1 km AGL relative vorticity Storm
SBCAPE Surface-based parcel convective available potential energy Environment
SBCIN Surface-based parcel convective inhibition Environment
SBLCL Surface-based parcel lifted condensation level Environment
SRHELO1 0-1km AGL storm-relative helicity (computed using Bunkers storm motion) Environment
SRHELO03 0-3km AGL storm-relative helicity (computed using Bunkers storm motion) Environment
SHRO1 0-1km AGL shear vector magnitude Environment
SHRO06 0-6 km AGL shear vector magnitude Environment
STP Fixed-layer significant tornado parameter, defined as STP = (SBCAPE/1500Tkg ') X Environment

[(2000 — SBLCL)/1000 m] X (SRHELO01/150 m? s~2) X (SHR06/20ms™'), where the SBLCL
term can only vary between 0.0 and 1.0, and the SHRO6 term can only vary between 0.625 and 1.5
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FIG. 2. Example of UH2S5 objects associated with forecast con-
vection in western NE on 21 Jun 2015 at two forecast hours (0600
and 0700 UTC). Maximum column reflectivity (contours) and
UH25 objects (filled contours) are plotted together from both the
0600 UTC (black) and 0700 UTC (red) forecasts. The algorithm
uses the set of grid points within each object to extract 1) storm
properties from the same hour’s forecast (e.g., for the 0700 UTC
object in red, the 0700 UTC hourly maximum fields are used) and
2) environmental properties from the previous hour’s forecast (e.g.,
the environment for the 0700 UTC object is taken from the col-
lection of points comprising the 0700 UTC object but using the
0600 UTC forecast).

extracted from the hourly maximum fields valid at the
same forecast hour as the UH25 object, while the envi-
ronmental variables used the forecast valid at the hour
prior to the time the object was defined, similar to the
method used by Clark et al. (2012). (Figure 2 provides
some additional detail into this process.) The maximum
value of each field within the set of grid points defining
the object was stored at each forecast hour for the
storm properties, while the mean value was used for
the environment properties. Using the mean value for
the environmental properties reduces the influence of
grid points that may be convectively contaminated
near the storm.

The final output of the object identification process
was a collection of ~192 000 objects and their associated
maximum within-storm and mean environmental prop-
erties, facilitating a comparison between attributes of
the storm (e.g., low-level rotation) and the environment
(e.g., low-level shear). The object and environment ex-
traction process is applied individually to each ensemble
member with the results aggregated across all ensemble
members.

d. Creation of next-day tornado guidance

In addition to the creation of storm objects, the
three rotation fields were used to produce next-day
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(1200-1200 UTC, forecast hours 12-36) tornado guid-
ance following the procedure of Sobash et al. (2011) and
extended to ensemble forecasts in Sobash et al. (2016).
This procedure does not use the previously created ob-
jects, but applies thresholds to each hourly max rotation
field from each member. This produces a binary field of
ones and zeros (Table 3) that are referred to as surrogate
severe reports (SSRs). The SSRs were mapped onto an
80-km grid,” where each 80-km grid point could only be
flagged as a “hit”’ once per 24-h period. The final grid of
SSRs for each 12001200 UTC period was then smoothed
with a Gaussian kernel to produce a 24-h surrogate severe
probability forecast (SSPF) for each ensemble member.
A Gaussian smoothing kernel width, defined by o, ranged
between o = 20 and 200 km, in 20-km increments. Each
ensemble member’s SSPF was averaged together to
create an ensemble SSPF (E-SSPF) tornado forecast
for each day.

For verification, tornado reports were retrieved from
the Storm Prediction Center’s (SPC) archive, mapped,
and smoothed onto the same 80-km grid as the SSRs to
produce an analogous field of observed storm reports
(OSRs) and a smoothed observation field [termed an
observed severe probability field (OSPF), as in Sobash
et al. (2011)]. The set of SSR thresholds in Table 3 was
selected using the total number of OSRs over the 92-day
period as a benchmark (285 OSRs); that is, the range of
SSR thresholds used here produced SSR biases centered
on 1 (Table 3).

The E-SSPFs created from the SSRs were verified
against the OSPFs (each with the same smoothing
length scale) using the fractions skill score (FSS; Roberts
and Lean 2008) over a domain consisting of most of the
central and eastern United States (Fig. 1). The E-SSPFs
with different o values were used within the FSS to
identify the spatial scales over which the forecasts were
skillful. As described in Roberts and Lean (2008), when
the fractional coverage of the event is small, the spatial
scales where FSS = 0.5 is deemed the lower limit of the
scales that are believable. In addition to the FSS,
E-SSPFs were evaluated using metrics such as re-
liability, resolution, and the area under the relative op-
erating characteristic (AUC; Wilks 2006).

2The 80-km grid used here is the NCEP 211 grid (http://www.nco.
ncep.noaa.gov/pmb/docs/on388/tableb.htmI#GRID211). Using
this grid produces probabilities that are consistent with SPC’s
probabilistic convective outlooks. Also, this coarse grid reduces
some of the reporting biases present in the observed severe weather
report database (e.g., Weiss and Vescio et al. 1998). The E-SSPFs
created using the native model grid, by “flagging” all grid points
within 40 km of each 3-km grid point, produced qualitatively similar
results.
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TABLE 3. Thresholds, SSR biases, and numbers of SSRs for UH25, UH03, and RVORT1. The boldface row indicates the thresholds that
produce an SSR bias closest to 1, when compared to the number of OSRs (285).

UH25 (m?s %) UHO03 (m?s~?) RVORT1 (s}
Threshold Bias No. Threshold Bias No. Threshold Bias No.
25 35 9975 20 23.87 6804 0.005 27.7 7894
50 16.64 4743 30 15.17 4323 0.006 17.18 4895
75 9.15 2609 40 10.27 2926 0.007 10.56 3010
100 5.45 1552 50 7.26 2068 0.008 6.46 1842
125 3.42 975 75 3.38 964 0.009 3.99 1136
150 22 628 100 1.7 484 0.01 2.4 685
175 1.45 413 110 1.33 378 0.0112 1.29 369
200 0.99 281 120 1.04 296 0.0117 1.01 287
130 0.84 238 0.012 0.87 247
3. Results produced similar results. Three percentiles (99.99th,

a. Model climatology of low-level and midlevel
rotation

To develop a sense for the behavior of the two new
low-level surrogates (UH03 and RVORT1) compared
with UH25, frequency distributions were computed for
one member of the ensemble for the entire 92-day pe-
riod for each forecast hour using the native model grid
points (Fig. 3). Distributions using other members

- (a) 99.990" percentile (~155 grid points/day/hr)

99.995th, and 99.999th) were used to identify values as-
sociated with ‘“‘extremes’” in the model climatology.
After stabilizing following the model spinup period,
UHO3 values associated with the three percentiles were
approximately half of the corresponding UH25 values
(Fig. 3). While the specific UH25 and UHO03 values
varied with forecast hour, the ratio between UH25 and
UHO3 was not sensitive to the time of day and generally
remained near 0.5 (i.e., UH03/UH25 ~ 0.5). The UH25

- (b) 99.995" percentile (~77 grid points/day/hr)
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and UHO3 magnitudes peaked near forecast hour 24
(i.e., 0000 UTC), when convective coverage and in-
tensity reached a maximum, and decreased during the
overnight convective minimum, as convective intensity
waned. RVORT1 magnitudes for all three percentiles
exhibited similar behavior, with maxima and minima
during similar forecast hours as the UH25 and UHO03
distributions.

In addition to the frequency distributions using the
native model grid points, a storm-based climatology was
performed to compare UH25, UH03, and RVORT1
values within storms at each forecast hour over the
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FIG. 4. Joint- and marginal-distribution histograms for
(a) RVORT1 and UH25, (b) RVORT1 and UH03, and (c) UH25
and UHO3 for forecast hours 13-36 (1200-1200 UTC). Counts of
storms within each bin (using approximately 60 bins of equal
width along each axis) are presented on a log scale. The mean
value of each marginal distribution is indicated by a black line.
The red line is a best-fit line to each distribution, with the r2 value
also provided. The diagonal black line in (c) is the 1:1 line for the
UH25-UHO3 distribution.

entire ensemble. Two-dimensional histograms of storm
counts were created to examine the relationship be-
tween these three surrogate fields (Fig. 4). Both UH25
and UHO3 are positively correlated with RVORT1
(Figs. 4a,b), but the strength of the relationship is much
greater between UHO03 and RVORT1, which is ex-
pected, since RVORT1 is a component of the UHO03
computation. UH25 and UHO3 had a strong positive
correlation, with a best-fit line to this distribution
producing a similar scaling between the two fields (i.e.,
UHO03 ~ UH25 X 0.5) to what was determined based on
the grid-based frequency distributions (Fig. 4c). Yet,
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variability exists in this relationship with many storms
possessing UHO3 greater or less than 0.5 X UH2S5. For
example, there exists a subset of storms that possess
UHO3 values greater than UH25 values (the collection of
points above the diagonal in Fig. 4c). These occur most

frequently for storms with UH25 values < 100m?s ™2,

b. Environments of simulated supercells possessing
low-level rotation

An extensive amount of research has examined the
environmental conditions conducive for supercell de-
velopment, strong low-level rotation within supercells,
and tornadoes (e.g., Fawbush and Miller 1954; Brooks
et al. 1994; Rasmussen and Blanchard 1998; Rasmussen
2003; T03, Thompson et al. 2012). These studies used
estimates of the near-storm environment taken from
environmental soundings or model analysis and forecast
soundings (e.g., Rapid Update Cycle analyses as in T03).
Collectively, these studies have identified environmen-
tal characteristics that discriminate well between tor-
nadic and nontornadic supercells, and the significant
tornado parameter (STP) was developed to combine
those environmental predictors that most strongly dis-
criminate between tornadic and nontornadic supercells
(SHRO06, SRHELO1, SBCAPE, and SBLCL; see Table 2
for definitions of predictors) into a composite index
(Thompson et al. 2002; T03).

Here, we verify the model’s ability to reproduce the
results obtained in these proximity-sounding studies by
directly sampling the magnitude of low-level rotation
produced within supercells (using RVORT1) and re-
lating it to the storm’s environment. To do so, the en-
vironments of all simulated storm objects were
extracted at each forecast hour, as described in section
2¢, which resulted in a collection of ~192000 storm-
environment pairs over the 92-day forecast period from
the 10-member CAM ensemble. The list of environ-
mental fields sampled from the model is provided in
Table 2. The choice of environmental parameters was
guided by preexisting parameters whose discrimination
potential has already been proven in previous work
(e.g., STP). For the analyses in section 3b, we explore
exclusively the environments of simulated supercells,’
defined as the subset of the ~192000 storm objects
containing UH25 > 75m?s 2 based on the threshold
used in Sobash et al. (2016). This resulted in a set of
~63 000 simulated supercell objects.

’

*While referred to as “simulated supercells,” the storm
mode of each object studied in section 3b was not identified.
UH25 > 75m?s™2 can occur within other convective modes
(e.g., intense squall lines).
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1) THERMODYNAMIC ENVIRONMENTS

The thermodynamic environments of the ~63000
simulated supercells were examined in aggregate
across three distributions: those possessing 1) weak
values of RVORT1 (<0.005s '), 2) moderate values of
RVORTI (=0.005s"', but <0.015s '), and 3) strong
values of RVORT1 (=0.015s"'). These thresholds
were chosen in order to correspond with the three
categories in TO3 (nontornadic, weakly tornadic, and
significantly tornadic).

Overall, supercells possessing strong values of RVORT1
tended to occur in thermodynamic environments with
lower SBLCLs, smaller SBCIN, and slightly larger
SBCAPE than storms with smaller values of RVORTI.
For example, storms with RVORT1 < 0.005s~ ! occurred
within environments characterized by a broad range of
SBLCL magnitudes, with a mean SBLCL of ~89%4m
(Fig. 5). As RVORT!1 increased, the range of SBLCL
values decreased; supercells with RVORTI > 0.015s!
had a mean SBLCL of ~479m, with a much smaller
interquartile range (~436m) than supercells possessing
weak RVORTI (interquartile range ~1012m) (Fig. 5).
The dependence of low-level rotation intensity on SBLCL
has been documented in other studies using proxim-
ity soundings (e.g., Rasmussen and Blanchard 1998; T03)
and supports in situ observations of warmer downdrafts
within tornadic supercells due to increased boundary layer
relative humidity (Markowski et al. 2002).

The RVORTI1 magnitude also exhibited sensitivity to
the amount of environmental instability (Fig. 6). Supercells
with stronger low-level rotation tended to have larger mean
values of SBCAPE (~1024Jkg ' for storms with weak
RVORT1 and ~2070Jkg ' for storms with strong
RVORT1I). Yet, there was considerable overlap among the
three SBCAPE distributions (Fig. 6a). TO3 noted a similar
result using MLCAPE, with a large overlap between
MLCAPE distributions in significantly tornadic and non-
tornadic supercells (e.g., their Fig. 6). While the mean
SBCIN for supercells with weak RVORT!1 is similar across
all three distributions (roughly 25J kg™ '), the range of en-
vironments supporting strong RVORT1 is much narrower
(Fig. 6b). For example, the 10th percentile for supercells
with weak RVORT1 is ~155J kg ', but for supercells with
strong RVORTI it is ~85Jkg !, suggesting supercells
with strong RVORT]1 rarely occur in environments
with SBCIN > 85J kg . It is likely that the supercells with
weak RVORT1 and large values of SBCIN are elevated,
preventing appreciable low-level rotation from developing.

2) KINEMATIC ENVIRONMENTS

The strength of RVORT1 does not appear to be
sensitive to deep-layer shear magnitude (SHRO06), but is
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sensitive to the low-level shear (SHRO1; Fig. 7a). For
example, the mean values of SHR06 range between
~21 and 24ms ™! among the three distributions, which
are nearly identical to the mean SHRO06 values ob-
tained by TO3 in their three groups of supercells. On the
other hand, SHRO1 discriminated well between the
weak and strong RVORT1 supercell distributions
(Fig. 7a), with little overlap of the weak and strong
distributions’ interquartile ranges. Furthermore, the
mean values for each distribution of SHRO1 are very
similar to those identified in T03. In addition to SHRO1,
SRHELO1 and SRHELO3 discriminate well between
supercells with weak and strong RVORT]1 (Fig. 7b). A
substantial portion (~75%) of the increase in the mean
SRHELO3 values between the weak RVORT1 and
strong RVORT1 distributions occurs in the 0-1km
AGL layer, as was also the case in Rasmussen (2003)
and T03 (Fig. 7b).

3) COMBINED PARAMETER FIELDS AND STP

Based on their ability to discriminate between non-
tornadic and significantly tornadic supercells in TO03,
SHRO1 and SBLCL have been combined, along with
SHRO06 and SBCAPE, into composite indices such as
the STP (T03). While the range of STP values among
the supercells with strong RVORT1 is generally
smaller here than in TO3 (Fig. 8), which is likely due
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to differences in the specific STP formulation, STP
remains an effective discriminator between supercells
that produce weak and strong low-level rotation in the
present dataset (Fig. 8).

In addition to STP, the discriminatory ability of a
combination of SHRO1 and SBLCL fields can be fur-
ther illustrated by looking at the SHR0O1-SBLCL pa-
rameter space for supercells with weak versus strong
magnitudes of RVORT]1, as has been done in Craven
and Brooks (2004) and Brooks (2006) (Fig. 9). For the
supercells (i.e., simulated storms with UH25 > 75m?s ™%
see Figs. 9a,b), those with weak low-level rotation occur
across a wide range of the parameter space (Fig. 9a), while
those with strong low-level rotation (Fig. 9b) occur only
where SBLCLs are low (<~1000m AGL) and SHRO1
magnitudes are relatively large (>~10ms™~'). Many of
the storms in the overlap region of these two distri-
butions (Figs. 9a,b), that is, those storms that possess
weak low-level rotation, but occur in environments
conducive to strong low-level rotation, occur in envi-
ronments with large SBCIN, suggesting they are ele-
vated supercells (e.g., those occurring overnight) or
could be associated with convective modes other than
supercells (not shown).

The overlap in the two distributions is reduced further
when considering only intense supercells (UH25 >
150m?s~?; Figs. 9c,d). The intense supercells with weak
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low-level rotation occupy the parameter space of “high
based” environments with small SHRO1 magnitudes
(<~10ms™') and large SBLCLs (>~1000m AGL;
Fig. 9c), while those with strong low-level rotation occur
in environments nearly identical to the distribution in
Fig. 9b, that is, environments with large SHRO1 and low
SBLCLs (Figs. 9b and 9d are similar since most storms
with strong low-level rotation have UH25 magnitudes >
150 m?s™~?; see Fig. 4a). The distribution of the storms in
Figs. 9c,d within the SHRO1-SBLCL parameter space is
strikingly similar to that found with proximity soundings
in Brooks (2006), with a similar separation between the
two groups using a linear discriminant analysis (Fig. 10).
LCLs are smaller in Fig. 10a likely because of the use of
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MLLCL in Brooks (2006) instead of SBLCL in the
present work. Again, the model appears broadly capable
of reproducing the relationships deduced from obser-
vational studies of tornadic storms.

Figure 9 also illustrates a key reason for the inability of
UH25 to act as an effective surrogate for tornadoes.
Identifying potentially tornadic storms based on UH25
alone, even when choosing a higher threshold such as
UH25 > 150m”s >, will inevitably include a fraction of
storms occurring within environments hostile to torna-
dogenesis (e.g., the set of storms in Fig. 9c when using
UH25 > 150m?s ™). On the other hand, the identification
of storms within the favorable part of the parameter space
for tornadoes (i.e., low LCLs and large SHRO1) can be
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identified using RVORT]1, without the use of UH25 or diagnostics are related within simulated convective
supplementary environmental parameters. storms. For this, we return to using all storm objects
2 -2 . e .
c¢. Behavior of UH25 and UHO03 within simulated (UH.25 > 25m’s ), without 11rp1t1ng the agalysm toa
storms partlcular. S}lbset. We pay particular attention to the
characteristics of storms that possess large UHO03 and
In this section, we further examine how the midlevel RVORT1 magnitudes, without the presence of appre-
(UH25) and low-level rotation (UH03 and RVORT1) ciable midlevel rotation (i.e., UH25 < 75m?*s~%). Many
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of these storms possess UH03 > UH?25 (Fig. 4c), which
implies that low-level rotation is particularly strong,
relative to midlevel rotation (assuming that vertical ve-
locity, the other component in the UH computation, is
greater aloft than near the surface, which alone would
result in UH25 > UHO03).

To do so, the UH ratio within each simulated storm
was computed as

UHratio = UH03/UH25,

using the maximum UH25 and UHO03 magnitude within
each object. This metric allows for an evaluation of how
midlevel and low-level rotation is related within each
storm at any given time. Overall, a majority of storms
possess UH ratios between 0.3 and 0.7, with a maximum
in the number of storms near 0.5 (Fig. 11), agreeing with
the relationship identified between UH25 and UHO03 in
the grid-scale climatology (Fig. 3). For the vast majority
of storms, those with UH ratios closer to 1 tend to pos-
sess larger RVORT1 magnitudes. Two sets of storms
exist that deviate from this relationship, especially for
large magnitudes of RVORT1 (>0.015s"!) and large
UH ratios (>1). Although the overall number of storms
is small within these parts of the parameter space, we are
interested in examining these two subsets of storms,
specifically 1) storms with RVORT1 > 0.015s ™!, which
were identified in the section 3c, and 2) storms with UH
ratios greater than 1, where UHO3 exceeds UH25.

For storms with RVORT1 magnitudes > 0.015s™",
the UH ratios are often between 0.6 and 1.0, with a mean
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of ~0.8 (Fig. 11). Very few storms in this regime possess
UH ratios greater than 1, indicating that UHO3 rarely
exceeds UH25 in simulated storms that possess
RVORT1 > 0.015s . Further, the UH ratio appears to
be largely independent of RVORT1 magnitude for
storms in this regime, suggesting UH25 increases line-
arly with UHO03 among these storms, such that increased
midlevel rotation is associated with a corresponding
increase in the strength of the low-level rotation. These
UH25 and UHO03 magnitudes for these storms are large,
well above the UH thresholds typically used to identify
supercells (Fig. 12).

For storms with UH ratios > 1, intense low-level ro-
tation (i.e., RVORTI > 0.015s™') rarely occurs
(Fig. 11). RVORT!1 ranges from ~0.005 to ~0.015s~!
within this subset of storms, with the range centered
around 0.01s~'. The UH25 and UH03 magnitudes for
these storms are quite small, with most storms possess-
ing UH25 magnitudes smaller than 75m?s~? (Fig. 12).
The behavior of these storms is distinct from the be-
havior of the storms with strong low-level rotation in
subset 1. Among the storms in subset 2, those with larger
UH ratios, the average RVORT1 magnitude stays rel-
atively constant, near 0.01s '. Since RVORTI is
strongly correlated with UHO3, this suggests that within
this subset, those storms with larger UH ratios are pri-
marily due to a relative decrease in the magnitude of
UH25 (rather than a large increase in the magnitude of
UHO03, while UH2S stays constant).

The environments of the storms in subsets 1 and 2 have
different distributions of CAPE and SBLCL. The mean
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SBCAPE among storms in subset 1 is ~1600J kg ' larger
than those in subset 2, with little overlap between the two
distributions (Fig. 13). These differences are also present
for MLCAPE and MUCAPE (not shown). A smaller
difference is present for SBLCL, with the mean SBLCL
~150m less in the environments for the subset 2 storms
(not shown). Among the kinematic variables (e.g.,
SHRO1, SHRO06, and SRHELO01), little differences are
noted in the two distributions, suggesting that both subset
1 and 2 storms occur in environments of strong low-level
and deep-layer shear (not shown). Finally, the storm
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objects in subset 1 tend to be much larger in size than
those in subset 2 (Fig. 14).

The storms in subset 1 possess the traits of ““bona
fide”” simulated supercells, that is, storms containing
large magnitudes of UH25 and UHO03, large values of
environmental instability, and large object areas. On
the contrary, those in subset 2 have weak magnitudes
of UH25 and UHO3, are less persistent (leading to
smaller object areas), and occur in environments of
relatively weak environmental instability. Yet, those
storms in subset 2 are still capable of producing
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FIG. 10. (a) Scatterplot of UH25 objects from Figs. 11c and 11d (i.e., intense supercells with
maximum UH25 > 150 m®s™?) color coded by magnitude of low-level rotation (red, RVORT1 >
0.015s™; blue, RVORT1 < 0.005s ™ !). Best linear discriminator is plotted as a black line. (b) As in
(a), but for SHRO1I-MLLCL values from observed proximity soundings (from 1972 to 1999) asso-
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nonnegligible amounts of low-level rotation (often traits of severe storms that occur in low-CAPE/high-shear
greater than 0.01s~'; Fig. 11). While the simulated environments, or with shallow supercells that are more
storms in subset 2 do not appear to be traditional su- poorly resolved than those in subset 2 because of their
percells (i.e., those with UH25 > 75 m?s~?), they share  smaller size.
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d. Next-day tornado forecasts using low-level rotation
surrogates

So far, the results have provided confidence that low-
level rotation is produced in simulated supercells that
occur in environments similar to those conducive for ob-
served tornadoes. These results motivate the development

450 T
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of next-day tornado guidance that uses low-level rotation
diagnostics as surrogates for tornadoes without the need
for environmental filtering. Such forecasts should be
capable of providing an indication of the potential for
tornadoes and should be more skillful than using UH25
alone. To test these hypotheses, next-day probabilistic
forecasts of tornadoes are generated and verified fol-
lowing the approach outlined in section 2d. As de-
scribed in section 2d, this method uses the diagnostic
fields on the native model grid and not the storm ob-
jects used in sections 3b and 3c.

As in Sobash et al. (2016), E-SSPFs are generated
over a range of thresholds that produce a number of
SSRs over the 92-day period that is similar to the num-
ber of observed storm reports, after being mapped to
the 80-km forecast grid (Table 3). This ensures that the
number of forecast tornado “hits” is similar to the
number of observed tornado “hits,” reducing the effects
of forecast bias when using scores such as the FSS
(Mittermaier and Roberts 2010). During the 92-day
forecast period, 285 grid points were flagged where a
tornado report occurred at some point within the 24-h
period of interest (i.e., 285 OSRs). For UH25, UHO03,
and RVORT1, thresholds of approximately 200 m?s ™2,
120m?s™2, and 1.17 X 107?s~! produced SSR biases
closest to 1.0, respectively (Table 3).

E-SSPFs for two cases are presented here to dem-
onstrate the potential advantages of using UHO03 and
RVORT1 as surrogates for tornadoes. The first case,
16 May 2015, includes a large tornado outbreak across
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the central United States, with 25 OSRs occurring
within the United States, the largest 1-day total during
the 92-day period. The E-SSPFs for this day created
using the UH25, UHO03, and RVORT1 thresholds
where the bias is closest to one are shown in Fig. 15. On
this day, the UH25 E-SSPF produced the lowest
probabilities, since a relatively small number of storms
exceeded the high UH25 threshold (Fig. 15a). Both the
UHO03 (Fig. 15b) and RVORT1 E-SSPFs (Fig. 15¢)

produced higher probabilities, closer to the values
produced in the smoothed OSR field (Fig. 15d). The
spatial patterns of the three E-SSPFs are similar across
Kansas and Oklahoma, although the maximum prob-
abilities were positioned in different regions (cf.
Figs. 15b,c). In Minnesota, the RVORT1 E-SSPF has
the highest probabilities where a cluster of tornadoes
were reported, while UHO03 E-SSPF probabilities are
reduced, and are close to zero for the UH25 E-SSPFs.
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closest to 1 (Table 3).

Inspection of the forecast storms in Minnesota revealed
that these storms were shallow, with rotation restricted
to the lowest levels, hence, the improved E-SSPFs
for these storms using low-level rotation surrogates.
Also, a probability maximum exists in the UH25
E-SSPF in SW Texas, but does not in the RVORT1
E-SSPF. Several ensemble members correctly fore-
casted the development of isolated, intense, high-
based, supercells in this region, but no tornadoes
were observed. This is a scenario where appreciable
low-level rotation did not develop, reducing probabil-
ities in the RVORT1 E-SSPF.

The second case was a primarily nontornadic event
that occurred across the high plains of Montana,
Wyoming, and South Dakota (Fig. 16). Similar to fore-
casts of high-based intense supercells in the previous
case, the storms on this day were high based and mainly
produced severe wind gusts and large hail (only one
tornado report in this region; Fig. 16d). The use of the
RVORT]1 surrogate (Fig. 16c) reduced the magnitudes
of the E-SSPF probabilities over the UH25 (Fig. 16a)
and UHO3 E-SSPFs (Fig. 16b), improving the E-SSPFs.
The three surrogate fields were not useful in identi-
fying tornadic convection across southern Illinois and
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Indiana, even though convection was predicted in this
area. The storms in southern Illinois were similar to the
subset 2 storms discussed in section 3d and did not ex-
ceed the thresholds used for the surrogate fields.

For UH25 E-SSPFs, FSS values = 0.5 (the FSS
threshold indicating a skillful forecast) only occur when
using the largest UH25 thresholds, where the forecast
bias is closest to 1 (Fig. 17a). Even so, the FSS values here
barely exceed 0.5 and only occur at the largest smoothing
length scales (i.e., o > 180km), with a maximum FSS
over all UH25 thresholds of 0.521 at ¢ = 200km. At
o = 200km, the E-SSPFs suffer from very poor resolution
since large probability values (e.g., >25%) are rarely
produced (Fig. 19b). Compared with the UH25 E-SSPFs,
the UHO3 and RVORT1 E-SSPFs produce FSS = 0.5
at smaller smoothing length scales (i.e., o = 120km),
with a maximum FSS approaching 0.64 at o = 200km
(Figs. 17b,c). Compared to the UH25 E-SSPFs, UHO03
E-SSPFs produced larger FSS values at smaller smooth-
ing length scales for SSR thresholds with a forecast bias
closest to 1. RVORT1 E-SSPFs produced similar FSSs to
the UHO3 E-SSPFs, with a small increase in FSS noted at
thresholds where the surrogate bias is closest to 1, although
the FSS differences between the UHO03 E-SSPFs and
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FIG. 16. As in Fig. 15, but for E-SSPFs valid 1200 UTC 19 Jun-1200 UTC 20 Jun 2015 from the ensemble forecast
initialized at 0000 UTC 19 Jun 2015.

RVORT1 E-SSPFs are not statistically significant at
these thresholds, using a bootstrap resampling between
FSS differences, as in Sobash et al. (2016). In addition to
the FSS gains for UHO03 and RVORT1 E-SSPFs, receiver
operating characteristic (ROC) areas for these forecasts
were larger than the UH25 E-SSPFs at all smoothing
length scales (Fig. 18).

It is worth noting that for all E-SSPFs, FSSs increase
when the surrogate threshold is chosen to be slightly
lower than the threshold that produces an SSR bias
closest to 1 (Fig. 17). This result implies that over-
forecasting the number of SSRs (i.e., an SSR bias > 1)
has a positive impact on forecast skill. This behavior
appears to occur up to SSR biases of ~1.5 (Table 3), with
FSS values decreasing for biases larger than 1.5. Given
the small overall number of SSRs for these thresholds
(generally 200400 for biases between 1 and 1.5), the
number of unique storms identified is likely very sensi-
tive to the SSR threshold. Because of the small number
of SSRs, a slight decrease in the UH25, UHO03, or
RVORT1 threshold could lead to small improvements
in FSS by producing probabilities in new areas that were
not identified using a higher threshold. This effect was
not observed in Sobash et al. (2016), likely because of a
larger overall number of SSRs and, thus, less sensitivity
to small changes in threshold (their work used all severe
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reports rather than just tornado reports, resulting in a
much larger number of SSRs).

In addition to gains in FSS and ROC area, the re-
liability of the E-SSPFs, shown in Fig. 19a for E-SSPFs
using the bias = 1 SSR thresholds (Table 3) and

= 120km, also improves. These differences in re-
liability are most certain for probabilities < 20%, where
sample sizes are generally larger than 100 (Fig. 19b). For
these forecasts, RVORT1 E-SSPFs produce fairly reli-
able probabilities, while the UH25 E-SSPFs suffer from
overforecasting and hover near the “no skill” line. For
E-SSPF probabilities > 20%, the results are noisier,
reducing confidence in the reliability results in this
range, although there is some suggestion of improve-
ment in reliability for the UH03 and RVORT1 E-SSPFs.
For reference, the reliability of E-SSPFs created using
UH25 > 75m?s”2, the traditional threshold for identi-
fying supercells in the present forecast dataset, is pro-
vided in Fig. 19a. These forecasts are substantially
overconfident and produce small FSSs.

The lack of sharpness in the present set of E-SSPFs is
not ideal, but may not be a significant issue, since op-
erational probabilistic forecasts of tornadoes (e.g., SPC
probabilistic outlooks) also do not issue probabilities >
30%. While the filtered UH25 forecasts produced in
Gallo et al. (2016) did produce probabilities up to 80%
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FIG. 18. AUC curves for UH25 E-SSPFs (black), UHO3 E-SSPFs (green), and RVORT1
E-SSPFs (blue), as a function of smoothing length scale o (km). The E-SSPFs shown here use
the SSR thresholds that produce SSR biases closest to 1 (Table 3).

(although with very small sample sizes), the calibrated
probabilities of Jirak et al. (2014) did not exceed 40%,
similar to this work. An additional season or two of data
should reveal more about the ability of the forecast
system to produce sharper E-SSPFs for tornadoes.

4. Summary and discussion

The goal of this work was to gauge the ability of
CAMs, run with 3-km horizontal grid spacing and ini-
tialized at 0000 UTC, to provide useful information
concerning the next-day (i.e., forecast hours 12-36)
threat for tornadoes by directly sampling the CAM’s
forecasts of low-level rotation within intense convec-
tion. To do so, two diagnostic fields related to low-level
rotation, 0-3 km AGL updraft helicity (UH03) and 1 km
AGL relative vorticity (RVORT1), were extracted from
CAM output in a manner analogous to other diagnostic
fields designed to detect instances of convective ex-
tremes in CAMs (e.g., Kain et al. 2010). Using the CAM
predictions of /low-level rotation differs from prior work
that relied on CAM predictions of midlevel rotation and
environmental parameters (e.g., STP) to create tornado
forecast guidance (e.g., Clark et al. 2012; Jirak et al.
2014; Gallo et al. 2016).

The potential for UHO3 and RVORT1 to act as sur-
rogates for tornadoes, without the need for additional
environmental information, was established by directly
examining the near-storm environments in which super-
cells (i.e., defined as storm objects with object-maximum
UH25 > 75m?s~?) with appreciable low-level rotation
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developed. The forecasts were quite capable of producing
large RVORT1 and UHO3 magnitudes associated with
supercells occurring within environments of large SHRO1
and SRHELO1, as well as low SBLCLs. The aggregate
environmental statistics of storms with weak versus
strong low-level rotation presented here generally re-
produced the differences in environments of tornadic
and nontornadic supercells deduced in studies using
observed or model-based proximity soundings (e.g.,
Rasmussen and Blanchard 1998; Brooks 2006). The
STP was also a successful discriminator between sim-
ulated supercells with weak and strong low-level rota-
tion, just as was observed in T03 for observed tornadic
versus nontornadic storms.

While UHO03 magnitudes were typically around half as
large as UH25 magnitudes, the UH ratio (UH03/UH25)
was used to isolate storms that deviated from this cli-
matology. Supercells with the strongest low-level rota-
tion (RVORT1 > 0.015s™') possessed UH ratios
between 0.6 and 1.0, but rarely exceeded 1 (i.e., UH03
rarely exceeded UH25). Among these storms, UH25
and UHO03 magnitudes often exceeded 150m?*s~2, and
occurred within environments of strong instability
(mean SBCAPE > 2000J kg~ ') and large magnitudes of
shear. Those storms that did possess UH ratios > 1 had
UH25 and UH03 magnitudes below 75m?s ™2, yet they
often produced moderate to strong amounts of low-level
rotation (RVORT1 > 0.01s™'). These storms occurred
in environments of weak instability (mean SBCAPE <
500J kg~ '), but with shear magnitudes similar to the
environments of the traditional supercells containing
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FIG. 19. (a) Attributes diagram for E-SSPF:s for tornadoes using o = 120 km for UH25 > 75 m*s >
(gray), UH25 > 200m?*s ™2 (black), UHO03 > 121 m*s ™2 (green), and RVORT1 > 0.017s*
(blue). (b) Counts of forecasts per bin. Other than the E-SSPF using UH25 > 75 m?s 2, the
E-SSPFs shown here use the SSR thresholds that produce SSR biases closest to 1 (Table 3).

the strongest low-level rotation. The objects composing
the storms with UH ratios > 1 were also smaller in size,
suggesting the features were not persistent and likely
were poorly resolved. Given the likelihood that these
storms are overlooked by methods that use fixed UH25
thresholds to identify supercells (e.g., Sobash et al.
2011), future work should examine storms within the
high-shear/low-CAPE/low-UH25 parameter space to
determine if they are an important part of the next-day
tornado prediction problem, and the potential usage of
UHO03 as a better diagnostic to identify these storms
compared to UH25.

Finally, probabilistic tornado forecasts (E-SSPFs)
were produced using the low-level rotation diagnostics
as surrogates for tornadoes. A set of surrogate thresh-
olds was computed using the methodology outlined in
Sobash et al. (2016) by comparing SSRs to the number of
observed tornado reports. Tornado E-SSPFs produced
using UHO3 and RVORT1 possessed higher FSSs,
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larger ROC areas, and were more reliable than E-SSPFs
using UH2S5. The limited sample size of E-SSPFs above
20%, due in part to the smoothing necessary to produce
large FSSs, precludes a definitive statement on the re-
liability of these forecasts until a larger sample of fore-
casts is produced.

The FSSs at which the tornado E-SSPFs were skillful
were restricted to the largest scales examined (o =
160 km), suggesting that CAMs have little to no skill at
anticipating tornadoes on smaller scales, or that the low-
level rotation surrogates are inherently less skillful than,
say, those using UH25 as a surrogate to predict all severe
weather hazards (e.g., Sobash et al. 2016), resulting in a
need for additional smoothing to improve reliability.
From a practical perspective, given the similar E-SSPF
skill using both UH03 and RVORT1, it does not appear
that the inclusion of the RVORT1 diagnostic in model
output should be preferred over UHO3, at least in
models with similar horizontal grid spacing (i.e., 3 km).
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We hope this work spurs several important areas of
research. First, the low-level rotation diagnostics should
be embedded within CAMs run with finer grid spacing
than 3km (e.g., 1 km) to compare with the present set of
results. It is hypothesized that higher resolution will be
needed to resolve near-surface rotation associated with
mesovortices in systems such as QLCSs and may also
improve the ability of the surrogates to anticipate tornado
occurrence in traditional supercells. Second, the E-SSPFs
need to be verified against radar-derived verification
datasets, such as multiradar multisensor (MRMS) rota-
tion tracks (Zhang et al. 2016), in addition to observed
tornado reports. Using radar-derived rotation tracks
would provide an important “apples to apples’ compar-
ison between model-predicted and observed low-level
rotation. This comparison could be used as a baseline to
distinguish between the ability of the forecasts to correctly
place storms in space and time and the ability of the low-level
rotation diagnostics to be used as surrogates for tornadoes.

Finally, although not examined here, any biases that
exist in the simulated storm environment will inevitably
lead to errors in forecasts of low-level rotation. These
errors also impart limits on the predictability of storm
mode, placement, and timing. Thus, efforts to improve
the representation of the forecast near-storm environ-
ment should translate into gains in skill for E-SSPFs of
tornadoes and all severe weather hazards.
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