An Automated Python Algorithm to Quantify ZDR Arc and KDP–ZDR Separation Signatures in Supercells
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

An Automated Python Algorithm to Quantify ZDR Arc and KDP–ZDR Separation Signatures in Supercells

Filetype[PDF-3.39 MB]



Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Supercell thunderstorms often have pronounced signatures of hydrometeor size sorting within their forward-flank regions, including an arc-shaped region of high differential reflectivity (ZDR) along the inflow edge of the forward flank known as the ZDR arc and a clear horizontal separation between this area of high ZDR values and an area of enhanced KDP values deeper into the storm core. Recent work has indicated that ZDR arc and KDP–ZDR separation signatures in supercell storms may be related to environmental storm-relative helicity and low-level shear. Thus, characteristics of these signatures may be helpful to indicate whether a given storm is likely to produce a tornado. Although ZDR arc and KDP–ZDR separation signatures are typically easy to qualitatively identify in dual-polarization radar fields, quantifying their characteristics can be time-consuming and makes research into these signatures and their potential operational applications challenging. To address this problem, this paper introduces an automated Python algorithm to objectively identify and track these signatures in Weather Surveillance Radar-1988 Doppler (WSR-88D) data and quantify their characteristics. This paper will discuss the development of the algorithm, demonstrate its performance through comparisons with manually generated time series of ZDR arc and KDP–ZDR separation signature characteristics, and briefly explore potential uses of this algorithm in research and operations.
  • Source:
    Journal of Atmospheric and Oceanic Technology, 38(2), 371-386
  • DOI:
  • ISSN:
    0739-0572;1520-0426;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1