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An Automated Python Algorithm to Quantify Zpg Arc and Kpp—Zpgr Separation Signatures
in Supercells
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ABSTRACT: Supercell thunderstorms often have pronounced signatures of hydrometeor size sorting within their forward-
flank regions, including an arc-shaped region of high differential reflectivity (Zpr) along the inflow edge of the forward flank
known as the Zpg arc and a clear horizontal separation between this area of high Zp values and an area of enhanced Kpp
values deeper into the storm core. Recent work has indicated that Zpg arc and Kpp—Zpg separation signatures in supercell
storms may be related to environmental storm-relative helicity and low-level shear. Thus, characteristics of these signatures
may be helpful to indicate whether a given storm is likely to produce a tornado. Although Zp arc and Kpp—Zpr separation
signatures are typically easy to qualitatively identify in dual-polarization radar fields, quantifying their characteristics can be
time-consuming and makes research into these signatures and their potential operational applications challenging. To
address this problem, this paper introduces an automated Python algorithm to objectively identify and track these signatures
in Weather Surveillance Radar-1988 Doppler (WSR-88D) data and quantify their characteristics. This paper will discuss the
development of the algorithm, demonstrate its performance through comparisons with manually generated time series of
Zpr arc and Kpp—Zpr separation signature characteristics, and briefly explore potential uses of this algorithm in research

and operations.
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1. Introduction

Though supercell storms represent a small fraction of all
thunderstorms, they are responsible for a disproportionate
amount of severe weather reports in the United States. For
instance, they were associated with 51% of total severe
weather reports and 68.2% of tornado reports in the Midwest
in one 2-yr study period despite representing only 22.8% of all
storms examined (Duda and Gallus 2010). With the advent of
dual-polarization (dual-pol) radar and the subsequent dual-pol
upgrade of the Weather Surveillance Radar-1988 Doppler
(WSR-88D) network, several dual-pol signatures have been
identified in supercell storms that may be of use in determining
a particular supercell’s likelihood of producing severe wind,
large hail, or a tornado (e.g., Kumjian and Ryzhkov 2008; Van
Den Broeke et al. 2008; Romine et al. 2008). These signatures
include tornadic debris signatures (Ryzhkov et al. 2005; Van
Den Broeke and Jauernic 2014; Snyder and Ryzhkov 2015),
hail signatures in the core and forward flank (Picca and
Ryzhkov 2012; Dawson et al. 2014; Van Den Broeke 2016),
differential reflectivity (Zpr) columns associated with con-
vective updrafts (Brandes et al. 1995; Kumjian et al. 2014;
Snyder et al. 2015, 2017; Kuster et al. 2019), and the Zpg arc
along the supercell’s forward-flank reflectivity gradient
(Kumjian and Ryzhkov 2008, 2009; Dawson et al. 2014, 2015).

Among these supercell dual-pol signatures, initial studies
(Kumjian and Ryzhkov 2008, 2009; Kumjian et al. 2010; Palmer
et al. 2011; Crowe et al. 2012) have indicated that the Zpg arc
may show particular promise for use in operations, since it may
be able to provide information about the low-level near-storm
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kinematic environment. The Zpg arc is formed as precipitation
particles falling through a supercell’s forward flank are sorted
by the storm-relative flow, with smaller drops taking longer to
fall and thus being advected farther into the storm core by the
storm-relative wind than larger drops (Kumjian and Ryzhkov
2008, 2009; Dawson et al. 2014, 2015). Since larger drops are
more oblate and thus produce higher Zpyr values (Seliga and
Bringi 1976), this results in a band of high Zpgr along a su-
percell’s forward-flank reflectivity gradient as smaller drops
are sorted out of this region (Fig. 1). Size-sorted melting hail
may also contribute to enhancing Zpg in a supercell’s forward
flank in addition to raindrop size sorting, albeit in an area
slightly closer to the storm core than the traditional Zpgr arc
(Dawson et al. 2014). Additionally, Dawson et al. (2015) found
substantial positive correlations between the magnitude of the
storm-relative flow causing size sorting in the arc and storm-
relative helicity in all cases they examined except for idealized
hodographs that had either no shear or perfect Beltrami flow.
Thus, Zpgr arc size and intensity may be a useful proxy for
changes in the storm-relative wind magnitude and related
changes in environmental storm-relative helicity on scales
smaller than those resolved by the radiosonde network
(Kumjian and Ryzhkov 2008, 2009; Dawson et al. 2015).
Observational work by Van Den Broeke (2016, hereafter
VDBI16) examining Zpr arc characteristics in 25 classic su-
percells in 12 different environments found that Zpg arc width,
areal extent, and mean Zpg value were positively correlated
with low-level bulk shear; however, other environmental var-
iables such as midlevel relative humidity and the height of the
level of free convection (LFC) also influenced the size and
intensity of the Zpgr arc. The correlation between arc areal
extent and low-level shear is hypothesized by VDB16 to be due
to stronger size sorting by the storm-relative wind in higher-shear
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FIG. 1. Schematic of a Zpg arc in a tornadic supercell on 30 Mar
2016 near Tulsa, Oklahoma: (a) the arc outlined in purple over a
background of Zpg; (b) the arc in relation to the reflectivity field.

environments, which would not only lead to a drop size dis-
tribution in the arc region dominated by large drops with high
Zpr but may also lead to a larger area over which a sufficient
degree of size sorting occurs to produce Zpgr values above
3.5 dB in higher-shear environments. The increase in arc size in
environments with low relative humidity in the low levels may
be due to preferential evaporation of small drops as noted in
the analysis of supercell hook echo drop-size distributions
performed by Kumjian (2011), which helps skew the drop size
distribution toward larger drops and produce higher Zpgr
values apart from size sorting by the storm-relative wind.
However, Zpgr enhancements due to evaporation may be fairly
small compared to those from size sorting, with Kumjian and
Ryzhkov (2010) finding only a 0.25 dB increase in Zpg due to
subcloud evaporation in the driest profiles in their simulations.
Since the correlations found between arc metrics and envi-
ronmental variables by VDB16 were in a fairly small sample of
storms, and to the best knowledge of the authors little or no
other modeling or theoretical work exists to further illuminate
these potential correlations, further work examining a larger
number of supercells in different environments may be useful
in eliciting what Zpgr arc metrics can indicate to forecasters
about a supercell’s environment.

In addition to environmental information, changes in Zpg
arc metrics may also shed light on the progression of supercell
and tornado life cycles. Palmer et al. (2011) observed a cyclic
pattern of Zpg arc evolution in a violently tornadic supercell
during the 10 May 2010 tornado outbreak in Oklahoma, with
the Zpr arc extending back toward the hook echo leading up to
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tornadogenesis and weakening around tornado demise and
occlusion, only to strengthen again as a new mesocyclone be-
came established and produced another tornado. Kumjian
et al. (2010) documented a similar pattern of evolution during
the cycling process of a nontornadic supercell in central
Oklahoma, with the Zpg arc strengthening and extending back
toward the hook echo leading up to mesocyclone occlusion and
weakening following occlusion. Both Palmer et al. (2011) and
Kumjian et al. (2010) hypothesize that storm-relative inflow
weakens during occlusion as the occluding updraft weakens,
disrupting the size sorting in the arc region and weakening the
Zpr arc. As the next mesocyclone begins to strengthen, storm-
induced perturbations to the near-storm wind field may
strengthen the storm-relative inflow again, leading to stronger
size sorting in the arc region and a larger, more intense Zpr
arc. Zpr arc behavior across tornado life cycles has also been
investigated by Van Den Broeke (2017, hereafter VDB17),
with arcs observed to grow larger and wider from tornado-
genesis to tornado dissipation. VDB17, in line with prior work
(Palmer et al. 2011; Crowe et al. 2012) hypothesized that low-
level storm-relative inflow may be stronger during tornadic
times than when a tornado is not present, leading to stronger
size sorting and a larger and more intense Zpgr arc. However,
Van Den Broeke (2020) compared Zpg arc size and intensity
in tornadic storms in the half hour prior to tornadogenesis to
arc characteristics in nontornadic storms and did not find any
notable differences in mean arc size and intensity between the
pretornadic and nontornadic samples. Further study of trends in
Zpr arc characteristics leading up to tornadogenesis or torna-
dogenesis failure and over the mesocyclone cycling process in a
larger sample of supercells may be useful in determining what
the behavior of the Zpr arc may tell forecasters about a storm’s
cycling process and how likely a storm is to produce a tornado.

Another size sorting signature in supercells that has been
examined in previous studies is the separation between the
Zpr enhancement in the forward flank and the area of en-
hanced Kpp typically found within the storm core, known as
the Kpp foot (Romine et al. 2008; Crowe et al. 2010, 2012). First
examined in detail by Crowe et al. (2010) in three supercells in
Hurricane Rita’s rainbands, this separation is attributable to
the same drop-size sorting that creates the Zpgr arc. As size
sorting by the storm-relative wind advects smaller drops out of
the Zpg arc region, it reduces the liquid water content within
the Zpg arc and enhances it deeper in the storm core where the
small drops end up. Since Kpp is strongly related to the liquid
water content in a given radar volume, this reduces the Kpp
within the Zpgr arc and may enhance it in the storm core,
leading to a horizontal separation between areas of enhanced
Zpr and Kpp within the storm (Crowe et al. 2010). The mag-
nitude of a vector drawn between the centroids of the Kpp
and Zpr enhancements is hypothesized in previous studies
(Jurewicz and Gitro 2018; Loeffler and Kumjian 2018) to scale
with the strength of the low-level storm-relative wind, and the
orientation of that vector is thought to be parallel to the low-
level storm-relative wind direction. Thus, it may also be a
useful proxy for the low-level storm-relative wind and quan-
tities related to it, such as low-level shear, storm-relative hel-
icity, and storm inflow (Crowe et al. 2010, 2012).



FEBRUARY 2021

Initial work on Kpp—Zpr separation signatures often fo-
cused on the magnitude of the separation between regions of
enhanced Kpp and Zpgr. Crowe et al. (2012) examined this
signature in three different severe weather events and found
that the separation between areas of enhanced Zpr and Kpp
was greater during tornadic periods in the tornadic storms
examined and that areas of enhanced Zpg and Kpp overlapped
more during nontornadic periods and in storms that never
produced tornadoes. The more pronounced Kpp—Zpr sepa-
ration at tornadic times was thought to be due to a linkage
between more pronounced separation signatures and en-
hanced environmental storm-relative helicity. Martinaitis
(2017) also found that a signature of horizontal separation
between enhancements in Zpgr and Kpp was useful in dif-
ferentiating between tornadic and nontornadic storms in
convection associated with tropical cyclones in Florida when
used in conjunction with analysis of the reflectivity and velocity
fields. Ongoing work by Jurewicz and Gitro (2018) is dedicated
to determining how useful the Kpp—Zpg separation signature
is in differentiating between tornadic and nontornadic super-
cells in a large sample of storms and developing ways to im-
plement this signature in warning operations. Furthermore,
Loeffler and Kumjian (2018) have developed a semiautomated
algorithm to quantify the Kpp—Zpgr separation signature in
tornadic nonsupercell storms, and Loeffler et al. (2020) applied
this algorithm to supercells.

One parameter that recent work by Loeffler and Kumjian
(2018) and Loeffler et al. (2020) has found to be particularly
useful is the magnitude of the angle (Fig. 2) between a vector
connecting the Kpp and Zpr enhancement centroids and the
storm motion vector, referred to as the separation orientation
relative to storm motion. Loeffler and Kumjian (2018) found
that separation orientations closer to 90° were found to be
associated with larger values of low-level SRH for a given
separation vector length, and Loeffler et al. (2020) found that
tornadic supercells were much more likely to have separation
orientations close to orthogonal than nontornadic supercells.
Similarly, Homeyer et al. (2020) examined storm-centered
radar composites for a large sample of tornadic and non-
tornadic supercells, and they found that the separation vector
in the tornadic supercell composite was much closer to or-
thogonal to storm motion than the separation vector in the
nontornadic composite. While Jurewicz and Gitro (2018) did
not directly address the separation orientation, their work us-
ing separation vectors, surface winds, and storm motion vectors
to construct simple hodographs for the near-storm environ-
ment also suggests that larger angles between the separation
and storm motion vectors should be correlated with higher SRH
and low-level shear. For brevity, separation orientation relative
to storm motion will be referred to as the separation angle for the
rest of this study. Manual calculation of this signature has also
recently been featured as part of the National Weather Service
Central Region’s Tornado Warning Improvement Project
(TWIP) training (Johnson 2018). However, since manually
calculating the separation angle can be time-consuming and
subjective, especially when dealing with multiple supercells, a
fully automated algorithm that can calculate this signature
may prove useful to operational forecasters.
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FIG. 2. Plan view of the separation vector and separation ori-
entation relative to storm motion in an idealized storm (Fig. 4 from
Loeffler and Kumjian 2018).

To support future work examining Zpgr arc and Kpp—Zpr
separation signatures in large samples of supercells, this study
will introduce an open-source, automated Python algorithm to
quickly and reliably identify and track these signatures and
quantify their characteristics. In line with the previous work
discussed in the background section above, this algorithm fo-
cuses on calculating five variables to quantify the characteris-
tics of supercell size sorting signatures: Zpg arc area, Zpr arc
intensity (quantified as the mean Zpg value within the arc as
well as the mean of the 10 pixels with the highest Zpr values
within the arc), the separation angle, and the length of the
Kpp—Zpr separation vector. Section 2 will describe how the
algorithm works and the methodology used to calibrate Zpr
data for the algorithm. Section 3 will evaluate the algorithm’s
performance through comparisons of manually identified and
algorithm-derived Zpg arc and Kpp—Zpg separation signature
characteristics, discuss the algorithm’s limitations, and exam-
ine the algorithm’s performance in detail for a significantly
tornadic supercell. Finally, section 4 will summarize the results
and discuss future algorithm uses and improvements.

2. Data and methods
a. Zpr calibration

To mitigate potential bias in the Zpr data used to develop
the algorithm described in this paper, scatterer-based Zpr
calibration was performed following the methodology of
Ryzhkov et al. (2005), Picca and Ryzhkov (2012), and Van Den
Broeke and Van Den Broeke (2015). This calibration tech-
nique makes use of the relatively consistent radar presentation
of dry snow aggregates around 1.5 km above the environmental
freezing level, which tend to have reflectivity values between
20 and 35 dBZ, copolar cross-correlation coefficient (CC)
values above 0.99, and Zpr values between 0.1 and 0.2dB
(Ryzhkov et al. 2005; Picca and Ryzhkov 2012; Van Den
Broeke and Van Den Broeke 2015). To calibrate Zpg using
this technique, the average Zpgr of a region of dry snow ag-
gregates 1.5km above the freezing level is calculated first.
Next, a reference Zpg value of 0.15 dB, representing the Zpr
value that dry snow aggregates should theoretically display
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on a well-calibrated radar, is subtracted from the average Zpgr
value calculated in the previous step to create a calibration
factor. This calibration factor is then subtracted from the Zpg
field as a whole to calibrate it. For the 51 storm dataset from
VDB16 and VDBI17 that is used for algorithm verification in
section 3a, the manually calculated calibration factors used by
VDB16 and VDB17 were also used when running the algo-
rithm to maintain consistency with the Zpg calibration in the
dataset against which the algorithm is verified. For this dataset,
calibration factors ranged from —0.75 to 0.71 dB, with a mean
and median calibration factor of —0.09 dB. However, the mean
and median values of the calibration factor were 0.30 and
0.28 dB. These values suggest that Zpr bias may be substantial
enough to warrant calibration in a nonnegligible fraction of
cases when performing analyses involving cases from different
radars or different days.

To simplify the calibration process for newer cases, a Python
script has also been created to automatically calculate the Zpg
calibration factor. The script reads in 15 min of radar data from
the center of a given case’s analysis window using the Python
ARM Radar Toolkit (PyART; Helmus and Collis 2016), along
with a user-provided freezing level from a proximity sounding.
It then calculates the average Zpg for all radar pixels 1500 m
(£500m) above the freezing level that have reflectivity be-
tween 20 and 35 dBZ and CC above 0.99. A reference Zpgr
value of 0.15dB is then subtracted from this average Zpgr
value, which produces a calibration factor to be subtracted
from the case’s Zpg field. This script is available in the github
repository for this paper (https://github.com/mwilson14/
ZDRArcAlgorithm) for use with the algorithm.

b. Algorithm design

While recognizing a Zpg arc is often intuitive for a human
researcher or forecaster, programming a computer to identify
the same signature is often more difficult. Thus, we must first
precisely and objectively define what a Zpg arc is. For the
development of this algorithm, a Zpg arc is defined as an area
of Zpgr greater than 3.5 dB located on the inflow side of a su-
percell storm’s forward flank, consistent with the threshold
used to define the Zpr arc core by VDB16. This 3.5dB Zpgr
threshold was initially chosen as a value that subjectively
seemed to capture the most intense part of the Zpg arcs in the
supercell sample examined by VDB16. This threshold has been
further evaluated in work presented by Van Den Broeke
(2020), where 1.5,2,2.5, 3, 3.5, and 4 dB thresholds were tested
for defining the Zpg arc in several supercells. Thresholds that
were too low (2 dB and below) were found to produce “arcs” that
were much too large and included much of the storm area, while
thresholds higher than 3.5 dB often missed arcs entirely. Overall,
this sensitivity analysis indicated that the 3.5 dB threshold per-
formed well in most of the storms examined. However, we do
acknowledge that situations exist in which a lower or higher
threshold would be useful for identifying Zp arcs (e.g., in tropical
cyclone convection with overall low Zpg values), and with that in
mind we added the capability for this threshold to be modified by
the user in the final version of the algorithm.

The first step in the process of the algorithm’s process in
identifying Zpg arcs is to acquire and process radar data into a
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format that appropriate Python modules can ingest. This is
done using the nexradaws Python module (https:/github.com/
aarande/nexradaws) to download archived WSR-88D data
from an archive Unidata maintains in partnership with
Amazon Web Services (available at https://aws.amazon.com/
public-datasets/nexrad/), and extracting and gridding the nec-
essary radar variables (Zyy, Zpr, Kpp, and CC) from the
lowest tilt of each scan (usually 0.5°) onto a grid with a hori-
zontal spacing of 493m using PyART. PyART’s gridding
function has a number of possible settings, and for this analysis
was configured to use a Barnes analysis scheme with a radius of
influence that expands with distance from the radar to account
for beam broadening to map the raw radar data to the grid. To
identify the inflow side of the storm, the direction of the re-
flectivity gradient vector is calculated for all points where
gridded reflectivity is greater than 20 dBZ, and the direction
of a manually defined vector perpendicular to the storm’s
forward flank and pointing into the core is subtracted from it
[referred to as the forward-flank downdraft (FFD) vector;
Figs. 3a,b]. In the final version of the algorithm, this direction is
entered by the user in a pop-up window prior to starting the
algorithm. The gridded Zp field is masked in areas where this
difference is greater than 120°, since these areas are likely not
on the inflow side of the storm. Areas with CC values below
0.60 are also masked out in the Zpg field, since these areas
likely represent nonmeteorological scatterers and can create
spurious Zpg arc identifications (Figs. 3c,d).

The second step in the algorithm’s workflow is to pick out
areas that may be part of a Zpg arc. To identify potential Zpg
arc objects, the Zpg field is contoured at 3.25 dB, which has
been reduced slightly from the 3.5dB in the arc definition to
account for smoothing-induced loss of higher Zpy values as the
data are gridded. Individual, closed polygons are extracted
from the contoured Zpgr field using the Shapely Python
module (available at https://github.com/Toblerity/Shapely/
tree/master/docs/). The area, centroid, mean Zpgr value,
maximum Zpg value, mean reflectivity gradient value, mean
reflectivity gradient direction relative to the FFD vector, mean
CC, and mean reflectivity are then calculated and saved for
each potential Zpg arc polygon. Next, all Zpr polygons
identified in the previous step need to be associated with in-
dividual storms. To create storm objects, the reflectivity field is
smoothed and the 45 dBZ contour is plotted and split into
polygons in a similar manner to the Zpg field. The algorithm
plots the centroids of polygons with areas greater than 20 km?
and saves them as storm objects that are tracked through
subsequent radar scans. To deal with the possibility of super-
cells embedded within larger convective structures, the algo-
rithm plots a 50 dBZ contour inside any polygons with areas
greater than 300 km? and uses the centroids of any polygon(s)
derived from that contour as the storm objects within that poly-
gon. In cases with especially low or high reflectivity, the 45 and
50 dBZ thresholds can be adjusted up or down for more effective
tracking. An example storm object is shown in Fig. 3d. Once
storm objects are identified, Zpr polygons are matched with the
closest storm object to their centroid within a distance threshold
of 30 km, and the distance and direction from the polygon to its
corresponding storm object are saved for each polygon.
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FIG. 3. Inputs for the Zpr arc algorithm, showing (a) gridded reflectivity, (b) the FFD gradient vector (blue arrow) and reflectivity
gradient direction relative to that vector, (c) the raw gridded Zpg field, and (d) Zpg field with data masked where the Z gradient direction
relative to the FFD gradient vector direction is greater than 120° and CC less than 0.60, along with the 3.25 dB Zpg contour (purple) and
the associated storm object (dashed contours and red dot) for reference.

The third and final step in the algorithm’s Zpgr arc identifi-
cation process is to eliminate spurious arc detections and
combine multiple arc objects associated with the same storm.
At this point, a typical supercell with a Zpr arc will often have
multiple polygons associated with it, since it is not uncommon
for a Zpgr arc to contain multiple noncontiguous regions of
enhanced Zpg interrupted by a hail signature or other areas of
lower Zpgr. However, at this stage the algorithm frequently
identifies polygons that represent areas of enhanced Zpg away
from the inflow side of the storm’s forward flank in areas such
as the rear of the echo appendage, the northern or north-
western side of the precipitation shield, or with a small cell
moving into the main supercell’s inflow region. Although areas
of high Zpgr on the northern or northwestern flank of a storm
may be the Zpg arc of a developing left-moving supercell, since
this algorithm is designed to focus on right-moving supercells
these areas are excluded, since how they relate to the inflow
characteristics of the right-moving storm may not be clear. An
example of a cell with a real and a spurious polygon is shown in
Fig. 4. Areas such as this are not part of the Zpg arc, and thus a
reliable method for removing these spurious polygons is needed.

The automated algorithm presented here uses a random
forest classifier to accomplish this task. Random forest classi-
fiers (Breiman 2001) are a type of machine learning algorithm
that have shown promise working on similar classification
problems, with recent work applying them to tasks as diverse as
identifying and tracking mesoscale convective systems (MCSs)
in regional reflectivity mosaics (Haberlie and Ashley 2018),
improving the prediction of extreme precipitation events
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(Herman and Schumacher 2018), and forecasting the initiation
of deep convection using satellite data and numerical model
output (Mecikalski et al. 2015). Random forests work by
training an ensemble of decision trees on manually labeled
features (in this case, manually labeled arc and false detection
objects) and a series of attributes of those features, with the
goal being to use the attributes to accurately place the features

FIG. 4. An example of a supercell (labeled as ”’Storm 1,”” with the
storm centroid marked with a red circle) with multiple Zpr poly-
gons (purple outlines/numbers, with centroids marked by small
black stars) detected by the algorithm. In this case, object 0 is the
arc, while object 1 is a spurious detection due to an area of high
Zpr in the northern part of the storm. ““Storm 2” is a nonsupercell
storm object with an associated patch of high Zpg (purple outline).
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TABLE 1. Variables saved for each potential arc object for use in
the random forest algorithm.

Saved arc object variables

Arc area (km?)

Storm centroid-arc object centroid distance (km)

Mean Zpg value (dB)

Max Zpg value (dB)

Mean CC value

Mean Kpp value (° km™1)

Mean Z value (dBZ)

Mean Z gradient direction relative to FFD vector direction (°)

Mean Z gradient value (dBZ km ™)

Angle between storm centroid-arc object centroid vector and FFD
vector (°)

X component of storm centroid-arc object centroid vector (km)

Y component of storm centroid-arc object centroid vector (km)

in their manually labeled classes. Each decision tree starts by
randomly picking one of the attributes and picking the attri-
bute value that best splits the features into their correct clas-
sifications from a random subset of the attribute values. This is
then repeated for several different attributes, creating a mul-
tilevel decision tree. The use of random subsets of the attri-
butes to train each tree creates an ensemble of trees that
produce slightly different outcomes. Since each tree by itself
may not be an excellent classifier, the trees are combined into
an ensemble to create a random forest, with the class indicated
by the majority of the trees used as the output of the ensemble.
The ensemble prediction produced by the random forest tends
to be much more accurate than what any individual decision
tree could produce on its own (Géron 2017).

To create a random forest algorithm that can differentiate
between actual arc objects and false detections, a large training
dataset of manually labeled candidate polygons is needed. To
create this dataset, 20 supercell cases (10 tornadic, 10 non-
tornadic) were identified using the case selection criteria from
VDB16 and VDB17: namely, each storm had to display typical
supercell features such as a Zpg arc, Zpg column, and midlevel
mesocyclone while remaining close enough to the radar to be
sampled at altitudes below 1km. These cases were then run
through an initial version of the Zpg arc detection and tracking
algorithm. This script outputs a spreadsheet of the saved
characteristics for all polygons associated with each storm
(listed in Table 1), as well as plots of radar reflectivity with each
potential arc polygon plotted and numbered (as shown for one
storm in Fig. 4). Using the reflectivity images, each polygon was
manually classified as an arc polygon or nonarc polygon based
on whether it was located along the inflow side of the forward
flank of its associated supercell. From the 20 supercell cases
examined, this resulted in 1399 analysis times and 4724 man-
ually labeled polygons, split between 2154 arc polygons and
2570 false detections. To ensure that the random forest algo-
rithm would work in differentiating between actual Zpgr arc
objects and false detections in situations where it would be
useful to define the Zpg arc core with a value of Zpy different
than 3.5dB [for example, with low-topped supercells or su-
percells in tropical cyclone rainbands where drop sizes (and
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thus Zpg values) tend to be smaller overall], the polygon mean
Zpr was not used as a predictor variable in the final random
forest algorithm, and the polygon maximum Zpgr was nor-
malized by each polygon’s mean Zpg.

Next, this training dataset was fed into a random forest
classifier created in Python using the scikit-learn module
(Pedregosa et al. 2011). This random forest classifier included
100 decision trees and used a 9:1 train—test split, meaning that
90% of the training dataset was randomly selected by scikit-
learn to be set aside to train the random forest algorithm and
the remaining 10% was used to test the performance of the
resulting classifier. Since training the algorithm on one par-
ticular train—test split may give unrepresentative information
on the algorithm’s performance if the subset of the algorithm
used for testing is particularly “‘easy” or “‘hard” for the random
forest to classify, a technique known as k-fold cross validation
was used to evaluate the algorithm’s performance. In k-fold
cross validation, the training dataset is divided into k subsets
that are approximately equal in size. One of the subsets is re-
served as the testing dataset, and the algorithm is trained on the
remaining subsets and tested on the reserved subset. This is
then repeated k times, with each subset being used as the
training subset once, to generate k estimates of the model’s
performance (Kuhn and Johnson 2013). In this case, k was set
to 10, and the model achieved an average probability of correct
detection (POD) of 88.1% and a false alarm rate (FAR) of
11.4% on the training data. A final version of the random forest
algorithm was then created by training the random forest on
the entire training dataset. This final algorithm was tested on
an independent testing dataset consisting of 1753 manually
labeled Zpr polygons from 51 supercells drawn from the su-
percell datasets used by VDB16 and VDB17. The random
forest performed fairly well on this dataset, with a POD of
93.1% and a FAR of 17.9%, and captured almost all main arc
objects in the traditional location along the forward-flank edge,
as seen in Fig. 5. The FAR of 17.9% may seem high; however,
many of the false alarm objects are fairly small patches of high
Zpr along the periphery of the arc or within the supercell’s
hook echo (green dots in Fig. 5), which may or may not be
identified as part of the Zpg arc in a given manual analysis. The
final version of the random forest algorithm was then inte-
grated into the Zpg arc algorithm code to help remove spuri-
ous Zpgr polygons. Once the random forest algorithm has
ideally removed any false arc detections for each storm, the
remaining arc polygons are automatically combined into a
single arc object for each storm in each radar scan. Zpg arc
characteristics (listed in Table 2) are then calculated for each
arc object and saved for each radar scan. This results in a
Pandas dataframe (McKinney 2010) containing time series of
arc characteristics for each identified storm.

¢. Kpp—Zpr separation angle analysis

Since Loeffler and Kumjian (2018) and Loeffler et al. (2020)
found the separation angle between the Kpp—Zpgr separation
vector and the storm motion vector (Fig. 2) to be useful in
distinguishing tornadic and nontornadic storms, an objective
version of this calculation is included in the algorithm pre-
sented here. Kpp foot signatures are objectively identified in a
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FIG. 5. Storm-relative plot of all 1752 Zpr objects classified by
the random forest from the 51 storm testing dataset. Correctly
detected Zpg arc object centroids are plotted in blue, false detec-
tion centroids are green, false negative centroids are yellow, and
true negative centroids are red. For all objects, the dot size is
proportional to the object area. The FFD vector points to the top of
the plot, and the black outline is the time-averaged 40 dBZ outline
of a supercell on 17 Apr 2013 near KFDR for reference. The gray
dot in the middle is the storm centroid.

similar manner to how the initial Zpr polygons are con-
structed. First, the Kpp field is masked where reflectivity is
below 35 dBZ and contoured at 1.5° km ™. The 1.5° km ™' Kpp
threshold was chosen to agree with the threshold used to define
the Kpp foot in previous studies (Romine et al. 2008; Crowe
et al. 2012). This contour of Kpp is then broken into polygons
using Shapely, and polygons are assigned to the closest storm
object within 15 km. Multiple polygons on a single storm are
combined into a single Kpp foot object and the centroid of this
object is then used as the final Kpp foot centroid. For storms
with both a Kpp foot object and a Zpg arc object, a separation
vector is then defined extending from the Kpp foot centroid to
the Zpr arc centroid. The separation angle is then calculated as
the magnitude of the counterclockwise turning from the sep-
aration vector to the storm motion vector, as seen in Fig. 2. The
storm motion direction is entered by the user in a text box when
the algorithm is started, and it can be an observed storm

TABLE 2. List of variables calculated and saved by the algorithm.

Saved storm object variables

Mean arc Zpg value (dB)

Mean of 10 maximum Zpg values in arc (dB)
Zpr arc area (km?)

Kpp-Zpr separation vector length (km)
Separation angle magnitude (°)
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motion from an ongoing storm or a predicted storm motion
from a sounding.

The separation vector calculation presented here differs
from that presented by Loeffler and Kumjian (2018) in that the
separation vector is calculated between the centroids of the
Kpp foot and Zpg arc objects as defined above, while Loeffler
and Kumjian (2018) calculate their separation vector between
areas of enhanced Kpp and Zpg using variable, storm-specific
thresholds in a manually defined area of interest around each
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FIG. 7. Comparison between algorithm-derived and manual
storm mean Zpg arc areal extents. Dashed blue line is a 1:1 line
along which a perfect match would fall.
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storm. Both the threshold approach used in this algorithm for
identifying Kpp and Zpr enhancements and the dynamic
approach used by Loeffler and Kumjian (2018) have their
advantages and disadvantages. Exact thresholds have the
advantage of being relatively simple to implement, easy to vi-
sualize and compare to features observable in raw radar data,
and easy to verify against manual analyses. Dynamic ap-
proaches have the advantage of being able to analyze Kpp—
Zpr separation signatures even in environments where the
Zpr values in the arc do not reach a default threshold used to
define the arc (3.25dB in our case) and being unaffected by
problems with Zpg calibration. However, consistently quan-
tifying Zpr arc characteristics such as arc area or mean arc Zpr
value for work comparing storms in different environments
would be difficult with such an approach, as the value of Zpgr
that defines the arc would be constantly changing. Thus, an
exact threshold was chosen for this work in order to make
quantification of such characteristics possible and to allow a
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comparison with the manual Zpg arc analyses from VDB16
and VDB17.

d. Algorithm user interface and output

The final version of the algorithm can be run using a
graphical user interface written in Python. It requires users
to enter a radar site, FFD angle, and storm motion estimate
for real-time cases, and additionally information on a time
window of interest for historic cases. In addition, options
are provided to modify the thresholds used to define the
Zpr arc and Kpp foot objects as well as the reflectivity
thresholds used for the tracking algorithm. Once these
variables are set and the program is started, it automati-
cally downloads level II radar files and runs them through
the algorithm, saving output to a Pandas dataframe and a
placefile that can be displayed in GR2 Analyst. On a typical
laptop or desktop computer, the algorithm can process a
radar scan in as short as 30 s after it is downloaded, meaning
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F1G. 9. As in Fig. 7, but for storm mean values for (a) mean arc Zpg value, (b) the mean of the 10 maximum
gridpoint Zpg values in the arc, (c) separation angle, and (d) separation vector length.

that the placefile output can be viewed in near-real time in
GR2 Analyst.

3. Results
a. Overall algorithm performance

The final Zpg arc detection and tracking algorithm was run
on the 51 storms from the VDB16 and VDB17 dataset, and the
arc areas output by the algorithm were compared to the
manual 3.5 dB arc areas for each storm calculated by VDB16
and VDBI17 (Fig. 6a). Overall, the algorithm performed fairly
well, with a correlation of Spearman’s r = 0.830 between
algorithm-calculated and manual arc areas (throughout this
paper, r values and p values shown for correlations are calcu-
lated using a Spearman’s rank-order correlation due to the
non-Gaussian distribution of the Zpgr arc metrics, following
VDBI16). However, the algorithm struggled with some cases,
overpredicting areal extents in many of the larger arcs and
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underpredicting smaller arc areas or failing to detect them
entirely. Some of the mismatch between the algorithm and
manual arc areas may be due to the inherent subjectivity of
manual arc area calculations, especially in cases where the arc
is small or ill defined. Comparing storm-average manual and
algorithm arc areas produced a slightly larger correlation of
r = 0.837 (Fig. 7a).

The algorithm was also validated against manual calcula-
tions for the arc intensity metrics (mean arc Zpg and the mean
of the arc’s 10 maximum Zppg pixels) and the separation angle.
Since these values were not available from the VDB16 and
VDB17 dataset, manual 3.5 dB Zpg arc and Kpp foot polygons
were drawn for each storm in Python by using the ipyleaflet
module (https:/ipyleaflet.readthedocs.io/en/latest/) to project the
radar data (archived level II data from https://aws.amazon.com/
public-datasets/nexrad/ for Z and Zpg, archived level I1I data
from NCEI for Kpp) onto an interactive map and draw
the polygons on it. Once drawn, the latitude and longitude
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FIG. 10. A comparison of manual and algorithm Zpg arc identifications for the 16 Dec 2019 DeRidder tornadic supercell, showing
(a)—(c) manual (blue and black solid) and algorithm (dashed cyan) arc outlines for three selected times; (d) a scatterplot comparing
manual and algorithm arc areas; (¢) manual and algorithm-generated arc area time series.

coordinates of the outline of each polygon were then saved and
loaded into another script that calculated the metrics to be
verified using the manual arc and foot outlines, the original
radar data, and (for the separation angle analysis) the observed
storm motion for each storm. The mean Zpgr value for each
manually drawn arc polygon was calculated as the mean Zpg
value for all pixels from the original radar scan included within
the polygon, the mean of the 10 maximum arc Zpg values was
calculated as the mean of the 10 maximum Zpg pixels within
the arc polygon, the separation angle was calculated as the
angle between the storm motion vector and the separation
vector between the centroids of the manually drawn Kpp foot
and Zpr arc polygons, and the separation distance as the
length of that vector. Four storms did not have the required
level 111 Kpp data available in the NCEI level III archive and
were thus not used for the separation angle or distance vali-
dation. As seen in Fig. 8, the algorithm performed fairly well
for all four of these metrics, with particularly good perfor-
mance demonstrated in calculating the separation angle and
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separation distance (Figs. 8c,d). A notable low bias in the al-
gorithm values for the mean of the 10 maximum gridpoint Zpgr
values in the arc (Fig. 8b) can likely be explained as a conse-
quence of the gridding applied to the data used by the algo-
rithm, which likely smooths out the impact of some of the
individual pixels with very high Zpg values in the raw data. As
with the arc area verification, performance for all metrics im-
proves when considering storm-average values instead of in-
dividual radar scans (Fig. 9).

Although this algorithm performed fairly well for supercell
storms, it is important to note that it was only designed to
operate on supercells. Areas of enhanced Zpg in nonsupercell
storms are fairly common, with patches of high Zpr along the
leading edge of squall lines and areas of high Zpr beneath
developing updrafts in relatively disorganized storms [such as
those identified by the Thunderstorm Risk Estimation from
Nowcasting Development via Size Sorting (TRENDSS) algo-
rithm; Kingfield and Picca 2018] often identified as arcs if they
are in a similar location relative to the storm centroid as the arc
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FIG. 11. A comparison of manual and algorithm Zpg arc intensity metrics for the 16 Dec 2019 DeRidder tornadic
supercell, showing (a) time series of manual and algorithm-calculated arc mean Zpg values, (b) time series of the
mean of the 10 maximum Zpg values in manually analyzed and algorithm-identified arcs, (c) a scatterplot of manual
and algorithm arc mean Zpg values, and (d) a scatterplot of the mean of the 10 maximum Zpg values in the

manually drawn and algorithm-analyzed arc objects.

would be in a supercell. Some of these signatures may repre-
sent inflow enhancements similar to the Zpg arc [especially in
more organized convective modes, such as those noted by Crowe
etal. (2012) in a tornadic quasi-linear convective system (QLCS)]
while others may just be due to size sorting beneath developing
updrafts. Future work will focus on better characterizing these
signatures and determining which may be false detections and
which may provide potentially useful information.

b. Detailed case study: 16 December 2019

To further explore the algorithm’s performance, a detailed
case study was conducted using WSR-88D data from a tornadic
supercell near DeRidder, Louisiana, on 16 December 2019,
which had a well-defined Zpg arc for much of its lifetime. Both
authors independently used level II Zpr and Zyy data to draw
their own arc outlines in QGIS (QGIS Development Team 2019)
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and arc outline shapefiles were saved for each radar scan from
1643 to 1731 UTC 16 December 2019. To avoid potentially
biasing the results toward the algorithm analysis, both sets of
shapefiles were drawn before looking at any algorithm output
for this storm. Arc area and intensity metrics were then cal-
culated from each polygon as described in section 3a. These
metrics were then compared to the algorithm-calculated
metrics for this storm. A time series and scatterplot com-
parison of the manual and algorithm arc areas is shown in
Figs. 10b and 10c, and plots of the arc outlines from the
manual and algorithm analyses from several different times
are shown in Fig. 10a. Figure 11 shows similar time series
comparisons and scatterplots for mean arc Zpg value and the
mean of each arc’s 10 maximum gridpoint Zpg values.
Opverall the algorithm calculated arc area quite well in this
case, having correlations of r = 0.93 and r = 0.98 between the
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FIG. 12. A comparison of manual and algorithm Kpp foot identifications for the 16 Dec 2019 DeRidder tornadic supercell, showing
(a)—(c) manual (blue and black solid) and algorithm (dashed cyan) Kpp foot outlines for three selected times; (d) a scatterplot comparing
manual and algorithm Kpp foot areas; (e¢) manual and algorithm-generated Kpp foot area time series.

manual and algorithm arc areas and capturing temporal
changes in the manual arc area time series well. Examination of
arc identifications on individual radar scans shows that the al-
gorithm struggles to properly identify the arc in the storm’s
early stages when the arc signature was smaller and more
nebulous, but it performed well once the arc became large and
clearly defined. The biggest differences between the algorithm
and manual analyses often occurred when the Zpgr arc was
relatively disorganized and split into multiple separate regions
of higher Zpg (such as in Fig. 10b); however, these situations
produced the most substantial differences between the two
manual analyses as well. Intensity changes in the arc were
harder to capture, as reflected in the much lower correlations in
the initial comparisons between the manual and algorithm
values for these metrics ( = 0.27 and r = 0.27 for arc mean
ZpRr, r = 0.44 and r = 0.69 for the mean of the 10 maximum
Zpr pixels in the arc, dashed blue and black time series in
Fig. 11). Filtering the Zpy pixels in the manual arc outlines to
remove those with Zyy values below 20 dBZ to reflect the
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removal of those pixels in the algorithm’s quality control pro-
cess greatly improved the correlations (r = 0.45 and r = 0.39 for
arc mean Zpg, ¥ = 0.72 and r = 0.73 for the mean of the 10
maximum arc Zpg values, Fig. 11). The overall low bias in the
algorithm arc intensity metrics compared to the manual anal-
ysis is likely due to the gridding used in the algorithm calcu-
lations, which may smooth out higher Zpg values by averaging
them with other pixels within the radius of influence used for
the Barnes analysis in PyART. Despite this low bias, the al-
gorithm does capture the notable minimum in arc intensity well
in both intensity metrics (Figs. 11a,b).

To evaluate the algorithm’s performance in calculating the
angle between the Kpp—Zpr separation vector and the storm
motion vector, manual Kpp foot outlines were again drawn in
QGIS by both authors for each radar scan used in the Zpg arc
analysis above and saved as shapefiles. Kpp—Zpgr separation
metrics were then calculated using the polygon centroids and
observed storm motion as in section 3a. These values were then
compared to algorithm-calculated separation angles as shown
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FIG. 13. A comparison of manual and algorithm Kpp—Zpg separation signature identifications for the 16 Dec 2019 DeRidder tornadic
supercell, showing (a)—(c) manual and algorithm Kpp foot and Zpr arc centroids for three selected times; (d) a scatterplot comparing
manual and algorithm separation angles; (e¢) manual and algorithm-generated separation angle time series.

in Fig. 13. The algorithm generally does well in identifying the
location and size of the Kpp foot when compared to both
manual analyses, as seen in Figs. 12a-c. However, it occa-
sionally struggles to properly calculate the separation angle
when the Zpg arc is small, disorganized, or not detected by the
algorithm, as shown at the beginning of the time series com-
parison in Fig. 13e. The algorithm and manual analyses also
tend to agree fairly well on separation angle changes over time,
with both manual analyses and the algorithm analysis captur-
ing the gradual decrease in separation angle magnitude from
scans 10 through 24 and the subsequent increase in separation
angle (Fig. 13e). However, the algorithm tends to better match
the short-term trends seen in the second manual analysis as
opposed to the first.

c. Algorithm limitations

Although the automated Zpg arc and Kpp—Zpr separation
signature detection and tracking algorithm described in this
study performs well with most of the supercells in the dataset
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used to test it and often appears to qualitatively capture the
extent of the Zpg arc and Kpp foot well, some recurrent biases
and limitations of the algorithm do exist, as shown in Fig. 14.
Storms with large numbers of high-Zpg pixels in their rear-
flank downdraft regions occasionally have erroneous arc de-
tections there (Fig. 14a), and these became particularly difficult
to remove in cases where the region of high Zpy in the arc was
connected with high Zpg values in the storm’s rear (Fig. 14c).
Since the algorithm identifies possible arc objects by breaking
a contour of quality-controlled Zpg at 3.25 dB into polygons
and eliminates erroneous polygons with a random forest
classifier, a polygon that contains both an actual arc and a
spurious arc detection results in either an excessively large arc
area if it is classified as an arc or a small or missing arc if it is
classified as a nonarc area of high Zpgr. The algorithm also
relies on a relatively rudimentary storm tracking algorithm to
produce storm objects to which potential arc objects are as-
signed, and a missed or incorrectly tracked storm can occa-
sionally cause arc objects to be lost or assigned to a storm other
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Non-Arc Zp, polygons

Storm Centroids

FIG. 14. Examples of Zpg arc algorithm failure cases. (a) A manually defined Zpg arc is incorrectly combined
with a separate area of high Zpg from a trailing storm. The purple arrow points toward the centroid of the storm of
interest. (b) An area of high Zp in the storm’s rear flank that is contiguous with the arc is erroneously included in
the final arc object. (c) A well-defined arc (identified by the purple arrow) is misclassified by the random forest.

than the storm they are actually associated with. Arc objects on
extremely large storms can also be missed when the random
forest considers their distance from the storm centroid to be
too great (Fig. 14b). Finally, the algorithm has been designed
mainly for work with supercell storms and tends to produce
spurious Zpg arc and Kpp foot objects with nonsupercell storm
modes. Future improvements to the algorithm, including the
adoption of an improved storm tracking algorithm, should
help mitigate these issues.

4. Summary

The Zpg arc and Kpp-Zpr separation signatures represent
dual-polarization evidence of the degree of hydrometeor size
sorting occurring in a supercell’s forward flank. Previous work
(Kumjian and Ryzhkov 2008, 2009; Kumjian et al. 2010; Palmer
et al. 2011; Crowe et al. 2012; Loeffler and Kumjian 2018;
Loeffler et al. 2020) indicates that these signatures may be
useful for inferring the magnitude of low-level shear and
storm-relative helicity in a supercell’s environment, and po-
tentially even in differentiating between tornadic and non-
tornadic storms. However, quantifying characteristics of these
signatures can be time-consuming and can thus present diffi-
culties in both research and operations. This paper presents an
automated algorithm for the identification and quantification
of Zpr arc and Kpp—Zpg separation signatures. A comparison
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of manual and algorithm-calculated Zpg arc areas from the 51
supercells considered in this paper shows that this algorithm
can reliably detect Zpg arcs and that algorithm arc area cal-
culations are similar to those produced by manual analysis of
WSR-88D data. Furthermore, the detailed analysis of the
16 December 2019 DeRidder, Louisiana, supercell indicates
that the algorithm may be able to accurately capture time
trends in arc areal extent and the separation angle between the
Kpp—Zpr separation and storm motion vectors.

Future work will focus on using this algorithm to examine
Zpr arcs and Kpp—Zpr separation signatures in a large sample
of supercells. This analysis will be used to further explore
whether these signatures exhibit any reliable trends before
tornadogenesis or tornadogenesis failure and how these sig-
natures vary in different near-storm environments. In addition,
improvements will be made to the algorithm to reduce false
Zpr arc detections, especially in nonsupercell storms. Finally,
the storm-tracking and object-identification frameworks used
in this algorithm could be used to build automated algorithms
to identify and quantify the characteristics of other supercell
polarimetric signatures that may be useful in warning opera-
tions, such as Zpgr column area and depth or polarimetrically
inferred hailfall area. The code for the algorithm presented
here is available online (at https://github.com/mwilson14/
ZDRArcAlgorithm), and suggestions for new features, im-
provements, or bug reports from the community are welcome.


https://github.com/mwilson14/ZDRArcAlgorithm
https://github.com/mwilson14/ZDRArcAlgorithm
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