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ABSTRACT: Supercell thunderstorms often have pronounced signatures of hydrometeor size sortingwithin their forward-

flank regions, including an arc-shaped region of high differential reflectivity (ZDR) along the inflow edge of the forward flank

known as the ZDR arc and a clear horizontal separation between this area of high ZDR values and an area of enhancedKDP

values deeper into the storm core. Recent work has indicated thatZDR arc andKDP–ZDR separation signatures in supercell

storms may be related to environmental storm-relative helicity and low-level shear. Thus, characteristics of these signatures

may be helpful to indicate whether a given storm is likely to produce a tornado. AlthoughZDR arc andKDP–ZDR separation

signatures are typically easy to qualitatively identify in dual-polarization radar fields, quantifying their characteristics can be

time-consuming and makes research into these signatures and their potential operational applications challenging. To

address this problem, this paper introduces an automatedPython algorithm to objectively identify and track these signatures

inWeather SurveillanceRadar-1988Doppler (WSR-88D) data and quantify their characteristics. This paper will discuss the

development of the algorithm, demonstrate its performance through comparisons with manually generated time series of

ZDR arc and KDP–ZDR separation signature characteristics, and briefly explore potential uses of this algorithm in research

and operations.
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1. Introduction

Though supercell storms represent a small fraction of all

thunderstorms, they are responsible for a disproportionate

amount of severe weather reports in the United States. For

instance, they were associated with 51% of total severe

weather reports and 68.2% of tornado reports in the Midwest

in one 2-yr study period despite representing only 22.8% of all

storms examined (Duda and Gallus 2010). With the advent of

dual-polarization (dual-pol) radar and the subsequent dual-pol

upgrade of the Weather Surveillance Radar-1988 Doppler

(WSR-88D) network, several dual-pol signatures have been

identified in supercell storms that may be of use in determining

a particular supercell’s likelihood of producing severe wind,

large hail, or a tornado (e.g., Kumjian and Ryzhkov 2008; Van

Den Broeke et al. 2008; Romine et al. 2008). These signatures

include tornadic debris signatures (Ryzhkov et al. 2005; Van

Den Broeke and Jauernic 2014; Snyder and Ryzhkov 2015),

hail signatures in the core and forward flank (Picca and

Ryzhkov 2012; Dawson et al. 2014; Van Den Broeke 2016),

differential reflectivity (ZDR) columns associated with con-

vective updrafts (Brandes et al. 1995; Kumjian et al. 2014;

Snyder et al. 2015, 2017; Kuster et al. 2019), and the ZDR arc

along the supercell’s forward-flank reflectivity gradient

(Kumjian and Ryzhkov 2008, 2009; Dawson et al. 2014, 2015).

Among these supercell dual-pol signatures, initial studies

(Kumjian andRyzhkov 2008, 2009; Kumjian et al. 2010; Palmer

et al. 2011; Crowe et al. 2012) have indicated that the ZDR arc

may show particular promise for use in operations, since it may

be able to provide information about the low-level near-storm

kinematic environment. TheZDR arc is formed as precipitation

particles falling through a supercell’s forward flank are sorted

by the storm-relative flow, with smaller drops taking longer to

fall and thus being advected farther into the storm core by the

storm-relative wind than larger drops (Kumjian and Ryzhkov

2008, 2009; Dawson et al. 2014, 2015). Since larger drops are

more oblate and thus produce higher ZDR values (Seliga and

Bringi 1976), this results in a band of high ZDR along a su-

percell’s forward-flank reflectivity gradient as smaller drops

are sorted out of this region (Fig. 1). Size-sorted melting hail

may also contribute to enhancing ZDR in a supercell’s forward

flank in addition to raindrop size sorting, albeit in an area

slightly closer to the storm core than the traditional ZDR arc

(Dawson et al. 2014). Additionally, Dawson et al. (2015) found

substantial positive correlations between the magnitude of the

storm-relative flow causing size sorting in the arc and storm-

relative helicity in all cases they examined except for idealized

hodographs that had either no shear or perfect Beltrami flow.

Thus, ZDR arc size and intensity may be a useful proxy for

changes in the storm-relative wind magnitude and related

changes in environmental storm-relative helicity on scales

smaller than those resolved by the radiosonde network

(Kumjian and Ryzhkov 2008, 2009; Dawson et al. 2015).

Observational work by Van Den Broeke (2016, hereafter

VDB16) examining ZDR arc characteristics in 25 classic su-

percells in 12 different environments found thatZDR arc width,

areal extent, and mean ZDR value were positively correlated

with low-level bulk shear; however, other environmental var-

iables such as midlevel relative humidity and the height of the

level of free convection (LFC) also influenced the size and

intensity of the ZDR arc. The correlation between arc areal

extent and low-level shear is hypothesized byVDB16 to be due

to stronger size sorting by the storm-relative wind in higher-shear
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environments, which would not only lead to a drop size dis-

tribution in the arc region dominated by large drops with high

ZDR but may also lead to a larger area over which a sufficient

degree of size sorting occurs to produce ZDR values above

3.5 dB in higher-shear environments. The increase in arc size in

environments with low relative humidity in the low levels may

be due to preferential evaporation of small drops as noted in

the analysis of supercell hook echo drop-size distributions

performed by Kumjian (2011), which helps skew the drop size

distribution toward larger drops and produce higher ZDR

values apart from size sorting by the storm-relative wind.

However,ZDR enhancements due to evaporationmay be fairly

small compared to those from size sorting, with Kumjian and

Ryzhkov (2010) finding only a 0.25 dB increase in ZDR due to

subcloud evaporation in the driest profiles in their simulations.

Since the correlations found between arc metrics and envi-

ronmental variables by VDB16 were in a fairly small sample of

storms, and to the best knowledge of the authors little or no

other modeling or theoretical work exists to further illuminate

these potential correlations, further work examining a larger

number of supercells in different environments may be useful

in eliciting what ZDR arc metrics can indicate to forecasters

about a supercell’s environment.

In addition to environmental information, changes in ZDR

arc metrics may also shed light on the progression of supercell

and tornado life cycles. Palmer et al. (2011) observed a cyclic

pattern of ZDR arc evolution in a violently tornadic supercell

during the 10 May 2010 tornado outbreak in Oklahoma, with

theZDR arc extending back toward the hook echo leading up to

tornadogenesis and weakening around tornado demise and

occlusion, only to strengthen again as a new mesocyclone be-

came established and produced another tornado. Kumjian

et al. (2010) documented a similar pattern of evolution during

the cycling process of a nontornadic supercell in central

Oklahoma, with theZDR arc strengthening and extending back

toward the hook echo leading up to mesocyclone occlusion and

weakening following occlusion. Both Palmer et al. (2011) and

Kumjian et al. (2010) hypothesize that storm-relative inflow

weakens during occlusion as the occluding updraft weakens,

disrupting the size sorting in the arc region and weakening the

ZDR arc. As the next mesocyclone begins to strengthen, storm-

induced perturbations to the near-storm wind field may

strengthen the storm-relative inflow again, leading to stronger

size sorting in the arc region and a larger, more intense ZDR

arc. ZDR arc behavior across tornado life cycles has also been

investigated by Van Den Broeke (2017, hereafter VDB17),

with arcs observed to grow larger and wider from tornado-

genesis to tornado dissipation. VDB17, in line with prior work

(Palmer et al. 2011; Crowe et al. 2012) hypothesized that low-

level storm-relative inflow may be stronger during tornadic

times than when a tornado is not present, leading to stronger

size sorting and a larger and more intense ZDR arc. However,

Van Den Broeke (2020) compared ZDR arc size and intensity

in tornadic storms in the half hour prior to tornadogenesis to

arc characteristics in nontornadic storms and did not find any

notable differences in mean arc size and intensity between the

pretornadic and nontornadic samples. Further study of trends in

ZDR arc characteristics leading up to tornadogenesis or torna-

dogenesis failure and over the mesocyclone cycling process in a

larger sample of supercells may be useful in determining what

the behavior of the ZDR arc may tell forecasters about a storm’s

cycling process and how likely a storm is to produce a tornado.

Another size sorting signature in supercells that has been

examined in previous studies is the separation between the

ZDR enhancement in the forward flank and the area of en-

hanced KDP typically found within the storm core, known as

theKDP foot (Romine et al. 2008; Crowe et al. 2010, 2012). First

examined in detail by Crowe et al. (2010) in three supercells in

Hurricane Rita’s rainbands, this separation is attributable to

the same drop-size sorting that creates the ZDR arc. As size

sorting by the storm-relative wind advects smaller drops out of

the ZDR arc region, it reduces the liquid water content within

theZDR arc and enhances it deeper in the storm core where the

small drops end up. Since KDP is strongly related to the liquid

water content in a given radar volume, this reduces the KDP

within the ZDR arc and may enhance it in the storm core,

leading to a horizontal separation between areas of enhanced

ZDR and KDP within the storm (Crowe et al. 2010). The mag-

nitude of a vector drawn between the centroids of the KDP

and ZDR enhancements is hypothesized in previous studies

(Jurewicz and Gitro 2018; Loeffler and Kumjian 2018) to scale

with the strength of the low-level storm-relative wind, and the

orientation of that vector is thought to be parallel to the low-

level storm-relative wind direction. Thus, it may also be a

useful proxy for the low-level storm-relative wind and quan-

tities related to it, such as low-level shear, storm-relative hel-

icity, and storm inflow (Crowe et al. 2010, 2012).

FIG. 1. Schematic of a ZDR arc in a tornadic supercell on 30 Mar

2016 near Tulsa, Oklahoma: (a) the arc outlined in purple over a

background of ZDR; (b) the arc in relation to the reflectivity field.
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Initial work on KDP–ZDR separation signatures often fo-

cused on the magnitude of the separation between regions of

enhanced KDP and ZDR. Crowe et al. (2012) examined this

signature in three different severe weather events and found

that the separation between areas of enhanced ZDR and KDP

was greater during tornadic periods in the tornadic storms

examined and that areas of enhancedZDR andKDP overlapped

more during nontornadic periods and in storms that never

produced tornadoes. The more pronounced KDP–ZDR sepa-

ration at tornadic times was thought to be due to a linkage

between more pronounced separation signatures and en-

hanced environmental storm-relative helicity. Martinaitis

(2017) also found that a signature of horizontal separation

between enhancements in ZDR and KDP was useful in dif-

ferentiating between tornadic and nontornadic storms in

convection associated with tropical cyclones in Florida when

used in conjunction with analysis of the reflectivity and velocity

fields. Ongoing work by Jurewicz andGitro (2018) is dedicated

to determining how useful the KDP–ZDR separation signature

is in differentiating between tornadic and nontornadic super-

cells in a large sample of storms and developing ways to im-

plement this signature in warning operations. Furthermore,

Loeffler and Kumjian (2018) have developed a semiautomated

algorithm to quantify the KDP–ZDR separation signature in

tornadic nonsupercell storms, and Loeffler et al. (2020) applied

this algorithm to supercells.

One parameter that recent work by Loeffler and Kumjian

(2018) and Loeffler et al. (2020) has found to be particularly

useful is the magnitude of the angle (Fig. 2) between a vector

connecting the KDP and ZDR enhancement centroids and the

storm motion vector, referred to as the separation orientation

relative to storm motion. Loeffler and Kumjian (2018) found

that separation orientations closer to 908 were found to be

associated with larger values of low-level SRH for a given

separation vector length, and Loeffler et al. (2020) found that

tornadic supercells were much more likely to have separation

orientations close to orthogonal than nontornadic supercells.

Similarly, Homeyer et al. (2020) examined storm-centered

radar composites for a large sample of tornadic and non-

tornadic supercells, and they found that the separation vector

in the tornadic supercell composite was much closer to or-

thogonal to storm motion than the separation vector in the

nontornadic composite. While Jurewicz and Gitro (2018) did

not directly address the separation orientation, their work us-

ing separation vectors, surface winds, and stormmotion vectors

to construct simple hodographs for the near-storm environ-

ment also suggests that larger angles between the separation

and storm motion vectors should be correlated with higher SRH

and low-level shear. For brevity, separation orientation relative

to stormmotion will be referred to as the separation angle for the

rest of this study. Manual calculation of this signature has also

recently been featured as part of the National Weather Service

Central Region’s Tornado Warning Improvement Project

(TWIP) training (Johnson 2018). However, since manually

calculating the separation angle can be time-consuming and

subjective, especially when dealing with multiple supercells, a

fully automated algorithm that can calculate this signature

may prove useful to operational forecasters.

To support future work examining ZDR arc and KDP–ZDR

separation signatures in large samples of supercells, this study

will introduce an open-source, automated Python algorithm to

quickly and reliably identify and track these signatures and

quantify their characteristics. In line with the previous work

discussed in the background section above, this algorithm fo-

cuses on calculating five variables to quantify the characteris-

tics of supercell size sorting signatures: ZDR arc area, ZDR arc

intensity (quantified as the mean ZDR value within the arc as

well as the mean of the 10 pixels with the highest ZDR values

within the arc), the separation angle, and the length of the

KDP–ZDR separation vector. Section 2 will describe how the

algorithm works and the methodology used to calibrate ZDR

data for the algorithm. Section 3 will evaluate the algorithm’s

performance through comparisons of manually identified and

algorithm-derived ZDR arc andKDP–ZDR separation signature

characteristics, discuss the algorithm’s limitations, and exam-

ine the algorithm’s performance in detail for a significantly

tornadic supercell. Finally, section 4 will summarize the results

and discuss future algorithm uses and improvements.

2. Data and methods

a. ZDR calibration

To mitigate potential bias in the ZDR data used to develop

the algorithm described in this paper, scatterer-based ZDR

calibration was performed following the methodology of

Ryzhkov et al. (2005), Picca andRyzhkov (2012), andVanDen

Broeke and Van Den Broeke (2015). This calibration tech-

nique makes use of the relatively consistent radar presentation

of dry snow aggregates around 1.5 km above the environmental

freezing level, which tend to have reflectivity values between

20 and 35 dBZ, copolar cross-correlation coefficient (CC)

values above 0.99, and ZDR values between 0.1 and 0.2 dB

(Ryzhkov et al. 2005; Picca and Ryzhkov 2012; Van Den

Broeke and Van Den Broeke 2015). To calibrate ZDR using

this technique, the average ZDR of a region of dry snow ag-

gregates 1.5 km above the freezing level is calculated first.

Next, a reference ZDR value of 0.15 dB, representing the ZDR

value that dry snow aggregates should theoretically display

FIG. 2. Plan view of the separation vector and separation ori-

entation relative to stormmotion in an idealized storm (Fig. 4 from

Loeffler and Kumjian 2018).
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on a well-calibrated radar, is subtracted from the average ZDR

value calculated in the previous step to create a calibration

factor. This calibration factor is then subtracted from the ZDR

field as a whole to calibrate it. For the 51 storm dataset from

VDB16 and VDB17 that is used for algorithm verification in

section 3a, the manually calculated calibration factors used by

VDB16 and VDB17 were also used when running the algo-

rithm to maintain consistency with the ZDR calibration in the

dataset against which the algorithm is verified. For this dataset,

calibration factors ranged from 20.75 to 0.71 dB, with a mean

andmedian calibration factor of20.09 dB. However, the mean

and median values of the calibration factor were 0.30 and

0.28 dB. These values suggest that ZDR bias may be substantial

enough to warrant calibration in a nonnegligible fraction of

cases when performing analyses involving cases from different

radars or different days.

To simplify the calibration process for newer cases, a Python

script has also been created to automatically calculate the ZDR

calibration factor. The script reads in 15min of radar data from

the center of a given case’s analysis window using the Python

ARMRadar Toolkit (PyART; Helmus and Collis 2016), along

with a user-provided freezing level from a proximity sounding.

It then calculates the average ZDR for all radar pixels 1500m

(6500m) above the freezing level that have reflectivity be-

tween 20 and 35 dBZ and CC above 0.99. A reference ZDR

value of 0.15 dB is then subtracted from this average ZDR

value, which produces a calibration factor to be subtracted

from the case’s ZDR field. This script is available in the github

repository for this paper (https://github.com/mwilson14/

ZDRArcAlgorithm) for use with the algorithm.

b. Algorithm design

While recognizing a ZDR arc is often intuitive for a human

researcher or forecaster, programming a computer to identify

the same signature is often more difficult. Thus, we must first

precisely and objectively define what a ZDR arc is. For the

development of this algorithm, a ZDR arc is defined as an area

of ZDR greater than 3.5 dB located on the inflow side of a su-

percell storm’s forward flank, consistent with the threshold

used to define the ZDR arc core by VDB16. This 3.5 dB ZDR

threshold was initially chosen as a value that subjectively

seemed to capture the most intense part of the ZDR arcs in the

supercell sample examined byVDB16. This threshold has been

further evaluated in work presented by Van Den Broeke

(2020), where 1.5, 2, 2.5, 3, 3.5, and 4 dB thresholds were tested

for defining the ZDR arc in several supercells. Thresholds that

were too low (2dB and below)were found to produce ‘‘arcs’’ that

were much too large and included much of the storm area, while

thresholds higher than 3.5 dB often missed arcs entirely. Overall,

this sensitivity analysis indicated that the 3.5 dB threshold per-

formed well in most of the storms examined. However, we do

acknowledge that situations exist in which a lower or higher

thresholdwould be useful for identifyingZDRarcs (e.g., in tropical

cyclone convection with overall lowZDR values), and with that in

mind we added the capability for this threshold to be modified by

the user in the final version of the algorithm.

The first step in the process of the algorithm’s process in

identifying ZDR arcs is to acquire and process radar data into a

format that appropriate Python modules can ingest. This is

done using the nexradaws Python module (https://github.com/

aarande/nexradaws) to download archived WSR-88D data

from an archive Unidata maintains in partnership with

Amazon Web Services (available at https://aws.amazon.com/

public-datasets/nexrad/), and extracting and gridding the nec-

essary radar variables (ZHH, ZDR, KDP, and CC) from the

lowest tilt of each scan (usually 0.58) onto a grid with a hori-

zontal spacing of 493m using PyART. PyART’s gridding

function has a number of possible settings, and for this analysis

was configured to use a Barnes analysis scheme with a radius of

influence that expands with distance from the radar to account

for beam broadening to map the raw radar data to the grid. To

identify the inflow side of the storm, the direction of the re-

flectivity gradient vector is calculated for all points where

gridded reflectivity is greater than 20 dBZ, and the direction

of a manually defined vector perpendicular to the storm’s

forward flank and pointing into the core is subtracted from it

[referred to as the forward-flank downdraft (FFD) vector;

Figs. 3a,b]. In the final version of the algorithm, this direction is

entered by the user in a pop-up window prior to starting the

algorithm. The gridded ZDR field is masked in areas where this

difference is greater than 1208, since these areas are likely not

on the inflow side of the storm. Areas with CC values below

0.60 are also masked out in the ZDR field, since these areas

likely represent nonmeteorological scatterers and can create

spurious ZDR arc identifications (Figs. 3c,d).

The second step in the algorithm’s workflow is to pick out

areas that may be part of a ZDR arc. To identify potential ZDR

arc objects, the ZDR field is contoured at 3.25 dB, which has

been reduced slightly from the 3.5 dB in the arc definition to

account for smoothing-induced loss of higherZDR values as the

data are gridded. Individual, closed polygons are extracted

from the contoured ZDR field using the Shapely Python

module (available at https://github.com/Toblerity/Shapely/

tree/master/docs/). The area, centroid, mean ZDR value,

maximum ZDR value, mean reflectivity gradient value, mean

reflectivity gradient direction relative to the FFD vector, mean

CC, and mean reflectivity are then calculated and saved for

each potential ZDR arc polygon. Next, all ZDR polygons

identified in the previous step need to be associated with in-

dividual storms. To create storm objects, the reflectivity field is

smoothed and the 45 dBZ contour is plotted and split into

polygons in a similar manner to the ZDR field. The algorithm

plots the centroids of polygons with areas greater than 20 km2

and saves them as storm objects that are tracked through

subsequent radar scans. To deal with the possibility of super-

cells embedded within larger convective structures, the algo-

rithm plots a 50 dBZ contour inside any polygons with areas

greater than 300 km2 and uses the centroids of any polygon(s)

derived from that contour as the storm objects within that poly-

gon. In cases with especially low or high reflectivity, the 45 and

50 dBZ thresholds can be adjusted up or down for more effective

tracking. An example storm object is shown in Fig. 3d. Once

storm objects are identified, ZDR polygons are matched with the

closest storm object to their centroid within a distance threshold

of 30 km, and the distance and direction from the polygon to its

corresponding storm object are saved for each polygon.
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The third and final step in the algorithm’s ZDR arc identifi-

cation process is to eliminate spurious arc detections and

combine multiple arc objects associated with the same storm.

At this point, a typical supercell with a ZDR arc will often have

multiple polygons associated with it, since it is not uncommon

for a ZDR arc to contain multiple noncontiguous regions of

enhanced ZDR interrupted by a hail signature or other areas of

lower ZDR. However, at this stage the algorithm frequently

identifies polygons that represent areas of enhanced ZDR away

from the inflow side of the storm’s forward flank in areas such

as the rear of the echo appendage, the northern or north-

western side of the precipitation shield, or with a small cell

moving into the main supercell’s inflow region. Although areas

of high ZDR on the northern or northwestern flank of a storm

may be the ZDR arc of a developing left-moving supercell, since

this algorithm is designed to focus on right-moving supercells

these areas are excluded, since how they relate to the inflow

characteristics of the right-moving storm may not be clear. An

example of a cell with a real and a spurious polygon is shown in

Fig. 4. Areas such as this are not part of the ZDR arc, and thus a

reliablemethod for removing these spurious polygons is needed.

The automated algorithm presented here uses a random

forest classifier to accomplish this task. Random forest classi-

fiers (Breiman 2001) are a type of machine learning algorithm

that have shown promise working on similar classification

problems, with recent work applying them to tasks as diverse as

identifying and tracking mesoscale convective systems (MCSs)

in regional reflectivity mosaics (Haberlie and Ashley 2018),

improving the prediction of extreme precipitation events

(Herman and Schumacher 2018), and forecasting the initiation

of deep convection using satellite data and numerical model

output (Mecikalski et al. 2015). Random forests work by

training an ensemble of decision trees on manually labeled

features (in this case, manually labeled arc and false detection

objects) and a series of attributes of those features, with the

goal being to use the attributes to accurately place the features

FIG. 3. Inputs for the ZDR arc algorithm, showing (a) gridded reflectivity, (b) the FFD gradient vector (blue arrow) and reflectivity

gradient direction relative to that vector, (c) the raw griddedZDR field, and (d)ZDR field with datamasked where theZ gradient direction

relative to the FFD gradient vector direction is greater than 1208 and CC less than 0.60, along with the 3.25 dB ZDR contour (purple) and

the associated storm object (dashed contours and red dot) for reference.

FIG. 4. An example of a supercell (labeled as ’’Storm 1,’’ with the

storm centroid marked with a red circle) with multiple ZDR poly-

gons (purple outlines/numbers, with centroids marked by small

black stars) detected by the algorithm. In this case, object 0 is the

arc, while object 1 is a spurious detection due to an area of high

ZDR in the northern part of the storm. ‘‘Storm 2’’ is a nonsupercell

storm object with an associated patch of highZDR (purple outline).
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in their manually labeled classes. Each decision tree starts by

randomly picking one of the attributes and picking the attri-

bute value that best splits the features into their correct clas-

sifications from a random subset of the attribute values. This is

then repeated for several different attributes, creating a mul-

tilevel decision tree. The use of random subsets of the attri-

butes to train each tree creates an ensemble of trees that

produce slightly different outcomes. Since each tree by itself

may not be an excellent classifier, the trees are combined into

an ensemble to create a random forest, with the class indicated

by the majority of the trees used as the output of the ensemble.

The ensemble prediction produced by the random forest tends

to be much more accurate than what any individual decision

tree could produce on its own (Géron 2017).

To create a random forest algorithm that can differentiate

between actual arc objects and false detections, a large training

dataset of manually labeled candidate polygons is needed. To

create this dataset, 20 supercell cases (10 tornadic, 10 non-

tornadic) were identified using the case selection criteria from

VDB16 and VDB17: namely, each storm had to display typical

supercell features such as aZDR arc,ZDR column, andmidlevel

mesocyclone while remaining close enough to the radar to be

sampled at altitudes below 1 km. These cases were then run

through an initial version of theZDR arc detection and tracking

algorithm. This script outputs a spreadsheet of the saved

characteristics for all polygons associated with each storm

(listed in Table 1), as well as plots of radar reflectivity with each

potential arc polygon plotted and numbered (as shown for one

storm in Fig. 4). Using the reflectivity images, each polygonwas

manually classified as an arc polygon or nonarc polygon based

on whether it was located along the inflow side of the forward

flank of its associated supercell. From the 20 supercell cases

examined, this resulted in 1399 analysis times and 4724 man-

ually labeled polygons, split between 2154 arc polygons and

2570 false detections. To ensure that the random forest algo-

rithm would work in differentiating between actual ZDR arc

objects and false detections in situations where it would be

useful to define the ZDR arc core with a value of ZDR different

than 3.5 dB [for example, with low-topped supercells or su-

percells in tropical cyclone rainbands where drop sizes (and

thusZDR values) tend to be smaller overall], the polygon mean

ZDR was not used as a predictor variable in the final random

forest algorithm, and the polygon maximum ZDR was nor-

malized by each polygon’s mean ZDR.

Next, this training dataset was fed into a random forest

classifier created in Python using the scikit-learn module

(Pedregosa et al. 2011). This random forest classifier included

100 decision trees and used a 9:1 train–test split, meaning that

90% of the training dataset was randomly selected by scikit-

learn to be set aside to train the random forest algorithm and

the remaining 10% was used to test the performance of the

resulting classifier. Since training the algorithm on one par-

ticular train–test split may give unrepresentative information

on the algorithm’s performance if the subset of the algorithm

used for testing is particularly ‘‘easy’’ or ‘‘hard’’ for the random

forest to classify, a technique known as k-fold cross validation

was used to evaluate the algorithm’s performance. In k-fold

cross validation, the training dataset is divided into k subsets

that are approximately equal in size. One of the subsets is re-

served as the testing dataset, and the algorithm is trained on the

remaining subsets and tested on the reserved subset. This is

then repeated k times, with each subset being used as the

training subset once, to generate k estimates of the model’s

performance (Kuhn and Johnson 2013). In this case, k was set

to 10, and the model achieved an average probability of correct

detection (POD) of 88.1% and a false alarm rate (FAR) of

11.4%on the training data. A final version of the random forest

algorithm was then created by training the random forest on

the entire training dataset. This final algorithm was tested on

an independent testing dataset consisting of 1753 manually

labeled ZDR polygons from 51 supercells drawn from the su-

percell datasets used by VDB16 and VDB17. The random

forest performed fairly well on this dataset, with a POD of

93.1% and a FAR of 17.9%, and captured almost all main arc

objects in the traditional location along the forward-flank edge,

as seen in Fig. 5. The FAR of 17.9% may seem high; however,

many of the false alarm objects are fairly small patches of high

ZDR along the periphery of the arc or within the supercell’s

hook echo (green dots in Fig. 5), which may or may not be

identified as part of theZDR arc in a givenmanual analysis. The

final version of the random forest algorithm was then inte-

grated into the ZDR arc algorithm code to help remove spuri-

ous ZDR polygons. Once the random forest algorithm has

ideally removed any false arc detections for each storm, the

remaining arc polygons are automatically combined into a

single arc object for each storm in each radar scan. ZDR arc

characteristics (listed in Table 2) are then calculated for each

arc object and saved for each radar scan. This results in a

Pandas dataframe (McKinney 2010) containing time series of

arc characteristics for each identified storm.

c. KDP–ZDR separation angle analysis

Since Loeffler and Kumjian (2018) and Loeffler et al. (2020)

found the separation angle between the KDP–ZDR separation

vector and the storm motion vector (Fig. 2) to be useful in

distinguishing tornadic and nontornadic storms, an objective

version of this calculation is included in the algorithm pre-

sented here. KDP foot signatures are objectively identified in a

TABLE 1. Variables saved for each potential arc object for use in

the random forest algorithm.

Saved arc object variables

Arc area (km2)

Storm centroid-arc object centroid distance (km)

Mean ZDR value (dB)

Max ZDR value (dB)

Mean CC value

Mean KDP value (8 km21)

Mean Z value (dBZ)

Mean Z gradient direction relative to FFD vector direction (8)
Mean Z gradient value (dBZ km21)

Angle between storm centroid-arc object centroid vector and FFD

vector (8)
X component of storm centroid-arc object centroid vector (km)

Y component of storm centroid-arc object centroid vector (km)
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similar manner to how the initial ZDR polygons are con-

structed. First, the KDP field is masked where reflectivity is

below 35 dBZ and contoured at 1.58 km21. The 1.58 km21 KDP

threshold was chosen to agree with the threshold used to define

the KDP foot in previous studies (Romine et al. 2008; Crowe

et al. 2012). This contour of KDP is then broken into polygons

using Shapely, and polygons are assigned to the closest storm

object within 15 km. Multiple polygons on a single storm are

combined into a singleKDP foot object and the centroid of this

object is then used as the final KDP foot centroid. For storms

with both aKDP foot object and a ZDR arc object, a separation

vector is then defined extending from the KDP foot centroid to

theZDR arc centroid. The separation angle is then calculated as

the magnitude of the counterclockwise turning from the sep-

aration vector to the stormmotion vector, as seen in Fig. 2. The

stormmotion direction is entered by the user in a text boxwhen

the algorithm is started, and it can be an observed storm

motion from an ongoing storm or a predicted storm motion

from a sounding.

The separation vector calculation presented here differs

from that presented by Loeffler and Kumjian (2018) in that the

separation vector is calculated between the centroids of the

KDP foot and ZDR arc objects as defined above, while Loeffler

and Kumjian (2018) calculate their separation vector between

areas of enhanced KDP and ZDR using variable, storm-specific

thresholds in a manually defined area of interest around each

FIG. 5. Storm-relative plot of all 1752 ZDR objects classified by

the random forest from the 51 storm testing dataset. Correctly

detected ZDR arc object centroids are plotted in blue, false detec-

tion centroids are green, false negative centroids are yellow, and

true negative centroids are red. For all objects, the dot size is

proportional to the object area. The FFD vector points to the top of

the plot, and the black outline is the time-averaged 40 dBZ outline

of a supercell on 17 Apr 2013 near KFDR for reference. The gray

dot in the middle is the storm centroid.

TABLE 2. List of variables calculated and saved by the algorithm.

Saved storm object variables

Mean arc ZDR value (dB)

Mean of 10 maximum ZDR values in arc (dB)

ZDR arc area (km2)

KDP–ZDR separation vector length (km)

Separation angle magnitude (8)

FIG. 6. Comparison between algorithm-derived andmanualZDR

arc areal extents. Dashed blue line is a 1:1 line alongwhich a perfect

match would fall.

FIG. 7. Comparison between algorithm-derived and manual

storm mean ZDR arc areal extents. Dashed blue line is a 1:1 line

along which a perfect match would fall.
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storm. Both the threshold approach used in this algorithm for

identifying KDP and ZDR enhancements and the dynamic

approach used by Loeffler and Kumjian (2018) have their

advantages and disadvantages. Exact thresholds have the

advantage of being relatively simple to implement, easy to vi-

sualize and compare to features observable in raw radar data,

and easy to verify against manual analyses. Dynamic ap-

proaches have the advantage of being able to analyze KDP–

ZDR separation signatures even in environments where the

ZDR values in the arc do not reach a default threshold used to

define the arc (3.25 dB in our case) and being unaffected by

problems with ZDR calibration. However, consistently quan-

tifyingZDR arc characteristics such as arc area ormean arcZDR

value for work comparing storms in different environments

would be difficult with such an approach, as the value of ZDR

that defines the arc would be constantly changing. Thus, an

exact threshold was chosen for this work in order to make

quantification of such characteristics possible and to allow a

comparison with the manual ZDR arc analyses from VDB16

and VDB17.

d. Algorithm user interface and output

The final version of the algorithm can be run using a

graphical user interface written in Python. It requires users

to enter a radar site, FFD angle, and storm motion estimate

for real-time cases, and additionally information on a time

window of interest for historic cases. In addition, options

are provided to modify the thresholds used to define the

ZDR arc and KDP foot objects as well as the reflectivity

thresholds used for the tracking algorithm. Once these

variables are set and the program is started, it automati-

cally downloads level II radar files and runs them through

the algorithm, saving output to a Pandas dataframe and a

placefile that can be displayed in GR2 Analyst. On a typical

laptop or desktop computer, the algorithm can process a

radar scan in as short as 30 s after it is downloaded, meaning

FIG. 8. As in Fig. 6, but for (a)mean arcZDR value, (b) themean of the 10maximumgridpointZDR values in the arc,

(c) separation angle, and (d) separation vector length.
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that the placefile output can be viewed in near–real time in

GR2 Analyst.

3. Results

a. Overall algorithm performance

The final ZDR arc detection and tracking algorithm was run

on the 51 storms from the VDB16 and VDB17 dataset, and the

arc areas output by the algorithm were compared to the

manual 3.5 dB arc areas for each storm calculated by VDB16

and VDB17 (Fig. 6a). Overall, the algorithm performed fairly

well, with a correlation of Spearman’s r 5 0.830 between

algorithm-calculated and manual arc areas (throughout this

paper, r values and p values shown for correlations are calcu-

lated using a Spearman’s rank-order correlation due to the

non-Gaussian distribution of the ZDR arc metrics, following

VDB16). However, the algorithm struggled with some cases,

overpredicting areal extents in many of the larger arcs and

underpredicting smaller arc areas or failing to detect them

entirely. Some of the mismatch between the algorithm and

manual arc areas may be due to the inherent subjectivity of

manual arc area calculations, especially in cases where the arc

is small or ill defined. Comparing storm-average manual and

algorithm arc areas produced a slightly larger correlation of

r 5 0.837 (Fig. 7a).

The algorithm was also validated against manual calcula-

tions for the arc intensity metrics (mean arc ZDR and the mean

of the arc’s 10 maximum ZDR pixels) and the separation angle.

Since these values were not available from the VDB16 and

VDB17 dataset, manual 3.5 dBZDR arc andKDP foot polygons

were drawn for each storm in Python by using the ipyleaflet

module (https://ipyleaflet.readthedocs.io/en/latest/) to project the

radar data (archived level II data from https://aws.amazon.com/

public-datasets/nexrad/ for Z and ZDR, archived level III data

from NCEI for KDP) onto an interactive map and draw

the polygons on it. Once drawn, the latitude and longitude

FIG. 9. As in Fig. 7, but for storm mean values for (a) mean arc ZDR value, (b) the mean of the 10 maximum

gridpoint ZDR values in the arc, (c) separation angle, and (d) separation vector length.
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coordinates of the outline of each polygon were then saved and

loaded into another script that calculated the metrics to be

verified using the manual arc and foot outlines, the original

radar data, and (for the separation angle analysis) the observed

storm motion for each storm. The mean ZDR value for each

manually drawn arc polygon was calculated as the mean ZDR

value for all pixels from the original radar scan included within

the polygon, the mean of the 10 maximum arc ZDR values was

calculated as the mean of the 10 maximum ZDR pixels within

the arc polygon, the separation angle was calculated as the

angle between the storm motion vector and the separation

vector between the centroids of the manually drawn KDP foot

and ZDR arc polygons, and the separation distance as the

length of that vector. Four storms did not have the required

level III KDP data available in the NCEI level III archive and

were thus not used for the separation angle or distance vali-

dation. As seen in Fig. 8, the algorithm performed fairly well

for all four of these metrics, with particularly good perfor-

mance demonstrated in calculating the separation angle and

separation distance (Figs. 8c,d). A notable low bias in the al-

gorithm values for the mean of the 10 maximum gridpointZDR

values in the arc (Fig. 8b) can likely be explained as a conse-

quence of the gridding applied to the data used by the algo-

rithm, which likely smooths out the impact of some of the

individual pixels with very high ZDR values in the raw data. As

with the arc area verification, performance for all metrics im-

proves when considering storm-average values instead of in-

dividual radar scans (Fig. 9).

Although this algorithm performed fairly well for supercell

storms, it is important to note that it was only designed to

operate on supercells. Areas of enhanced ZDR in nonsupercell

storms are fairly common, with patches of high ZDR along the

leading edge of squall lines and areas of high ZDR beneath

developing updrafts in relatively disorganized storms [such as

those identified by the Thunderstorm Risk Estimation from

Nowcasting Development via Size Sorting (TRENDSS) algo-

rithm; Kingfield and Picca 2018] often identified as arcs if they

are in a similar location relative to the storm centroid as the arc

FIG. 10. A comparison of manual and algorithm ZDR arc identifications for the 16 Dec 2019 DeRidder tornadic supercell, showing

(a)–(c) manual (blue and black solid) and algorithm (dashed cyan) arc outlines for three selected times; (d) a scatterplot comparing

manual and algorithm arc areas; (e) manual and algorithm-generated arc area time series.
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would be in a supercell. Some of these signatures may repre-

sent inflow enhancements similar to the ZDR arc [especially in

more organized convective modes, such as those noted by Crowe

et al. (2012) in a tornadic quasi-linear convective system (QLCS)]

while others may just be due to size sorting beneath developing

updrafts. Future work will focus on better characterizing these

signatures and determining which may be false detections and

which may provide potentially useful information.

b. Detailed case study: 16 December 2019

To further explore the algorithm’s performance, a detailed

case study was conducted usingWSR-88D data from a tornadic

supercell near DeRidder, Louisiana, on 16 December 2019,

which had a well-defined ZDR arc for much of its lifetime. Both

authors independently used level II ZDR and ZHH data to draw

their own arc outlines in QGIS (QGISDevelopment Team 2019)

and arc outline shapefiles were saved for each radar scan from

1643 to 1731 UTC 16 December 2019. To avoid potentially

biasing the results toward the algorithm analysis, both sets of

shapefiles were drawn before looking at any algorithm output

for this storm. Arc area and intensity metrics were then cal-

culated from each polygon as described in section 3a. These

metrics were then compared to the algorithm-calculated

metrics for this storm. A time series and scatterplot com-

parison of the manual and algorithm arc areas is shown in

Figs. 10b and 10c, and plots of the arc outlines from the

manual and algorithm analyses from several different times

are shown in Fig. 10a. Figure 11 shows similar time series

comparisons and scatterplots for mean arc ZDR value and the

mean of each arc’s 10 maximum gridpoint ZDR values.

Overall the algorithm calculated arc area quite well in this

case, having correlations of r 5 0.93 and r 5 0.98 between the

FIG. 11. A comparison of manual and algorithmZDR arc intensitymetrics for the 16Dec 2019DeRidder tornadic

supercell, showing (a) time series of manual and algorithm-calculated arc mean ZDR values, (b) time series of the

mean of the 10maximumZDR values inmanually analyzed and algorithm-identified arcs, (c) a scatterplot ofmanual

and algorithm arc mean ZDR values, and (d) a scatterplot of the mean of the 10 maximum ZDR values in the

manually drawn and algorithm-analyzed arc objects.
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manual and algorithm arc areas and capturing temporal

changes in themanual arc area time series well. Examination of

arc identifications on individual radar scans shows that the al-

gorithm struggles to properly identify the arc in the storm’s

early stages when the arc signature was smaller and more

nebulous, but it performed well once the arc became large and

clearly defined. The biggest differences between the algorithm

and manual analyses often occurred when the ZDR arc was

relatively disorganized and split into multiple separate regions

of higher ZDR (such as in Fig. 10b); however, these situations

produced the most substantial differences between the two

manual analyses as well. Intensity changes in the arc were

harder to capture, as reflected in themuch lower correlations in

the initial comparisons between the manual and algorithm

values for these metrics (r 5 0.27 and r 5 0.27 for arc mean

ZDR, r 5 0.44 and r 5 0.69 for the mean of the 10 maximum

ZDR pixels in the arc, dashed blue and black time series in

Fig. 11). Filtering the ZDR pixels in the manual arc outlines to

remove those with ZHH values below 20 dBZ to reflect the

removal of those pixels in the algorithm’s quality control pro-

cess greatly improved the correlations (r5 0.45 and r5 0.39 for

arc mean ZDR, r 5 0.72 and r 5 0.73 for the mean of the 10

maximum arc ZDR values, Fig. 11). The overall low bias in the

algorithm arc intensity metrics compared to the manual anal-

ysis is likely due to the gridding used in the algorithm calcu-

lations, which may smooth out higher ZDR values by averaging

them with other pixels within the radius of influence used for

the Barnes analysis in PyART. Despite this low bias, the al-

gorithm does capture the notableminimum in arc intensity well

in both intensity metrics (Figs. 11a,b).

To evaluate the algorithm’s performance in calculating the

angle between the KDP–ZDR separation vector and the storm

motion vector, manual KDP foot outlines were again drawn in

QGIS by both authors for each radar scan used in the ZDR arc

analysis above and saved as shapefiles. KDP–ZDR separation

metrics were then calculated using the polygon centroids and

observed stormmotion as in section 3a. These values were then

compared to algorithm-calculated separation angles as shown

FIG. 12. A comparison of manual and algorithm KDP foot identifications for the 16 Dec 2019 DeRidder tornadic supercell, showing

(a)–(c) manual (blue and black solid) and algorithm (dashed cyan)KDP foot outlines for three selected times; (d) a scatterplot comparing

manual and algorithm KDP foot areas; (e) manual and algorithm-generated KDP foot area time series.
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in Fig. 13. The algorithm generally does well in identifying the

location and size of the KDP foot when compared to both

manual analyses, as seen in Figs. 12a–c. However, it occa-

sionally struggles to properly calculate the separation angle

when theZDR arc is small, disorganized, or not detected by the

algorithm, as shown at the beginning of the time series com-

parison in Fig. 13e. The algorithm and manual analyses also

tend to agree fairly well on separation angle changes over time,

with both manual analyses and the algorithm analysis captur-

ing the gradual decrease in separation angle magnitude from

scans 10 through 24 and the subsequent increase in separation

angle (Fig. 13e). However, the algorithm tends to better match

the short-term trends seen in the second manual analysis as

opposed to the first.

c. Algorithm limitations

Although the automated ZDR arc and KDP–ZDR separation

signature detection and tracking algorithm described in this

study performs well with most of the supercells in the dataset

used to test it and often appears to qualitatively capture the

extent of theZDR arc andKDP foot well, some recurrent biases

and limitations of the algorithm do exist, as shown in Fig. 14.

Storms with large numbers of high-ZDR pixels in their rear-

flank downdraft regions occasionally have erroneous arc de-

tections there (Fig. 14a), and these became particularly difficult

to remove in cases where the region of high ZDR in the arc was

connected with high ZDR values in the storm’s rear (Fig. 14c).

Since the algorithm identifies possible arc objects by breaking

a contour of quality-controlled ZDR at 3.25 dB into polygons

and eliminates erroneous polygons with a random forest

classifier, a polygon that contains both an actual arc and a

spurious arc detection results in either an excessively large arc

area if it is classified as an arc or a small or missing arc if it is

classified as a nonarc area of high ZDR. The algorithm also

relies on a relatively rudimentary storm tracking algorithm to

produce storm objects to which potential arc objects are as-

signed, and a missed or incorrectly tracked storm can occa-

sionally cause arc objects to be lost or assigned to a storm other

FIG. 13. A comparison of manual and algorithm KDP–ZDR separation signature identifications for the 16 Dec 2019 DeRidder tornadic

supercell, showing (a)–(c) manual and algorithm KDP foot and ZDR arc centroids for three selected times; (d) a scatterplot comparing

manual and algorithm separation angles; (e) manual and algorithm-generated separation angle time series.
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than the storm they are actually associated with. Arc objects on

extremely large storms can also be missed when the random

forest considers their distance from the storm centroid to be

too great (Fig. 14b). Finally, the algorithm has been designed

mainly for work with supercell storms and tends to produce

spuriousZDR arc andKDP foot objects with nonsupercell storm

modes. Future improvements to the algorithm, including the

adoption of an improved storm tracking algorithm, should

help mitigate these issues.

4. Summary

The ZDR arc and KDP–ZDR separation signatures represent

dual-polarization evidence of the degree of hydrometeor size

sorting occurring in a supercell’s forward flank. Previous work

(Kumjian andRyzhkov 2008, 2009; Kumjian et al. 2010; Palmer

et al. 2011; Crowe et al. 2012; Loeffler and Kumjian 2018;

Loeffler et al. 2020) indicates that these signatures may be

useful for inferring the magnitude of low-level shear and

storm-relative helicity in a supercell’s environment, and po-

tentially even in differentiating between tornadic and non-

tornadic storms. However, quantifying characteristics of these

signatures can be time-consuming and can thus present diffi-

culties in both research and operations. This paper presents an

automated algorithm for the identification and quantification

ofZDR arc andKDP–ZDR separation signatures. A comparison

of manual and algorithm-calculated ZDR arc areas from the 51

supercells considered in this paper shows that this algorithm

can reliably detect ZDR arcs and that algorithm arc area cal-

culations are similar to those produced by manual analysis of

WSR-88D data. Furthermore, the detailed analysis of the

16 December 2019 DeRidder, Louisiana, supercell indicates

that the algorithm may be able to accurately capture time

trends in arc areal extent and the separation angle between the

KDP–ZDR separation and storm motion vectors.

Future work will focus on using this algorithm to examine

ZDR arcs andKDP–ZDR separation signatures in a large sample

of supercells. This analysis will be used to further explore

whether these signatures exhibit any reliable trends before

tornadogenesis or tornadogenesis failure and how these sig-

natures vary in different near-storm environments. In addition,

improvements will be made to the algorithm to reduce false

ZDR arc detections, especially in nonsupercell storms. Finally,

the storm-tracking and object-identification frameworks used

in this algorithm could be used to build automated algorithms

to identify and quantify the characteristics of other supercell

polarimetric signatures that may be useful in warning opera-

tions, such as ZDR column area and depth or polarimetrically

inferred hailfall area. The code for the algorithm presented

here is available online (at https://github.com/mwilson14/

ZDRArcAlgorithm), and suggestions for new features, im-

provements, or bug reports from the community are welcome.

FIG. 14. Examples of ZDR arc algorithm failure cases. (a) A manually defined ZDR arc is incorrectly combined

with a separate area of highZDR from a trailing storm. The purple arrow points toward the centroid of the storm of

interest. (b) An area of high ZDR in the storm’s rear flank that is contiguous with the arc is erroneously included in

the final arc object. (c) A well-defined arc (identified by the purple arrow) is misclassified by the random forest.
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