The Impact of Lightning Data Assimilation on Deterministic and Ensemble Forecasts of Convective Events
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Impact of Lightning Data Assimilation on Deterministic and Ensemble Forecasts of Convective Events

Filetype[PDF-20.93 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A general lightning data assimilation technique is developed and tested with observations from the World Wide Lightning Location Network (WWLLN). The technique nudges the water vapor mixing ratio toward saturation within 10 km of a lightning observation and is more general than other approaches that require specific model microphysics or flash rates. This approach is applied to both deterministic and ensemble forecasts of the 29 June 2012 derecho event over the eastern United States and a deterministic forecast of the 17 November 2013 convective event over the Midwest using the Weather Research and Forecasting (WRF) Model run at a convection-permitting resolution. Lightning data are assimilated over the first three hours of the forecasts, and the subsequent impact on forecast quality is evaluated. For both events, the deterministic simulations with lightning-based nudging produce more realistic predicted composite reflectivity fields. For the forecasts of the 29 June 2012 event using ensemble data assimilation, forecast improvements from lightning assimilation were more modest than for the deterministic forecasts, suggesting that lightning assimilation may produce greater improvements in convective forecasts where conventional observations (e.g., aircraft, surface, radiosonde, satellite) are less dense or unavailable.
  • Source:
    Journal of Atmospheric and Oceanic Technology, 33(9), 1801-1823
  • DOI:
  • ISSN:
    0739-0572;1520-0426;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1