Metrics for Evaluating CMIP6 Representation of Daily Precipitation Probability Distributions
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Metrics for Evaluating CMIP6 Representation of Daily Precipitation Probability Distributions

Filetype[PDF-5.71 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The performance of GCMs in simulating daily precipitation probability distributions is investigated by comparing 35 CMIP6 models against observational datasets (TRMM-3B42 and GPCP). In these observational datasets, PDFs on wet days follow a power-law range for low and moderate intensities below a characteristic precipitation cutoff scale. Beyond the cutoff scale, the probability drops much faster, hence controlling the size of extremes in a given climate. In the satellite products analyzed, PDFs have no interior peak. Contributions to the first and second moments tend to be single-peaked, implying a single dominant precipitation scale; the relationship to the cutoff scale and log-precipitation coordinate and normalization of frequency density are outlined. Key metrics investigated include the fraction of wet days, PDF power-law exponent, cutoff scale, shape of probability distributions, and number of probability peaks. The simulated power-law exponent and cutoff scale generally fall within observational bounds, although these bounds are large; GPCP systematically displays a smaller exponent and cutoff scale than TRMM-3B42. Most models simulate a more complex PDF shape than these observational datasets, with both PDFs and contributions exhibiting additional peaks in many regions. In most of these instances, one peak can be attributed to large-scale precipitation and the other to convective precipitation. Similar to previous CMIP phases, most models also rain too often and too lightly. These differences in wet-day fraction and PDF shape occur primarily over oceans and may relate to deterministic scales in precipitation parameterizations. It is argued that stochastic parameterizations may contribute to simplifying simulated distributions.
  • Source:
    Journal of Climate, 35(17), 5719-5743
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1